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INTRODUCTION 
 
Let us consider the queueing system with rejections of the M/M/n/0  type. It is the 

system with a stationary Poisson input flow of rate λ  and exponential distributed 
service times with parameter .µ  The stationary distribution ( )kp  of the number of 
busy channels is a function of λ  and .µ  Let 1/ ,=τ µ  then ( ) ( , ).=kp f λ τ  The ques-
tion arises: is this formula valid for an arbitrary service-time distribution ( )G x  for a 
fixed average τ ? This property has been called invariance or insensitivity (the distri-
bution ( )kp  with respect to the service-time distribution with the same mean τ ). 

The researchers studied the problem of insensitivity since the middle of the twen-
tieth century. B. A. Sevastyanov [18] has proved the insensitivity property for the 
M/G/n/0  system by means of integro-differential equations method. The other proofs 
of the independence of the distribution ( )kp  of multi-channel system with rejections 
on the type of distribution ( )G x  for a fixed average service time [7, 11, 15] appeared 
later.  

I. N. Kovalenko found necessary and sufficient conditions of the insensitivity of 
the M/G/∞  system, that receives the customers of different types [12]. 
B. T. Guseinov [8] and D. König [10] considered the generalization of Kovalenko’s 
theorem. 

This monograph consists of three chapters. In the first chapter we have proved the 
insensitivity of the stationary characteristics with respect to the form of the service-
time distributions for the two M/G/n/0  systems with heterogeneous channels and dif-
ferent ways of distribution of customers by the channels (the equiprobable customer 
distribution by all channels and the equiprobable customer distribution by free chan-
nels). We have established that for systems with rejections that are near to these two 
types of systems, the insensitivity property is not saved. 

The Little’s formula, connecting the mean waiting time E( )W  with the mean 
queue length E( )Q ,  

sv

E( )E( ) ,=
QW
λ

 

is valid in the steady state for each queueing system with stationary flows of custom-
ers and services. Here, sv svP=λ λ  is the flow rate of serviced customers, svP  is the sta-
tionary probability of service for customer, and λ  is the intensity of the input flow. 
For the system without losses of customers we have svP 1=  and sv .=λ λ  It follows 
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from the Little’s formula that the steady-state characteristic sv svE( ) /(P E( ))= Q Wω  is 
insensitive with respect to the form of distribution functions of service time and inte-
rarrival time. The insensitivity of some other stationary characteristics can be proved 
using the balance equation for the average number of arrivals and serviced customers 
per unit of time, which is valid in the steady state. 

However, for complicated queueing systems (for example, for the systems with 
general distributions and batch arrivals) is usually not possible to prove the existence 
of a limiting steady state by analytical methods. In this case, we can try to check the 
alleged condition of the stationary distribution existence and the insensitivity of the 
stationary characteristics using simulation models. This approach is proposed in the 
second chapter of this paper. For the construction of simulation models, we use the 
GPSS World simulation system [2, 4, 13, 19, 25]. Simulation models are used by us 
to verify and illustrate the results obtained by analytical methods. 

Obtaining of recurrence relations or explicit formulas is the most common way of 
establishing the insensitivity of the stationary characteristics of queueing systems. In 
the third chapter of the monograph we give such relations obtained in recent studies 
[20-22] for queueing systems with threshold functioning strategies. Some of the ex-
plicit formulas obtained by us, are published for the first time. 

If the insensitivity of characteristics is proved for some system, the question arises 
about the verification of insensitivity properties of these characteristics for near to 
that considered here, but a more general system (for example, with the input flow of a 
more general type). In some cases, manage to prove sensitivity of the characteristics 
of such system, using the Erlangian distribution and the method of phases. This me-
thod is based on the fact that a random variable, distributed according to the Erlang 
law of k-th order, is the sum of k independent exponentially distributed random va-
riables. We use the method of phases to study the insensitivity property in the first 
and third chapters. 

Let us consider the basic assumptions and notation used in this paper. 
The interarrival times arT  and the service times svT  assumed to be independent 

identically distributed random variables with finite mean values arE( ) 1/= < ∞T λ  and 

svE( ) .= < ∞T τ  
We introduce the notation: F(x) is the probability distribution function of the ran-

dom variable arT , G(x) is the probability distribution function of the random variable 
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sv ,T  X is the number of customers in the batch, ak (1≤k<∞) is probability of the event 

{X=k}, moreover 
1 1

E( ) , 1.
∞ ∞

= =

= < ∞ =∑ ∑k k
k k

X ka a  

To refer of the systems with batch arrivals we use the superscript X. For example, 
XG /G/1 is the G/G/1 system, in which customers arrive in batches and the batch size 

is distributed according to the random variable X. 
We consider the following stationary characteristics of the queueing systems: Nc is 

the number of customers in the system, kp  is the probability of the event {Nc=k}, 
E( )Q  is the mean queue length, E( )W  is the mean waiting time in the queue, svP  is 
the probability of service for arrived customer, rejP  is the probability of rejection, 

sv rej(P 1 P ),= −  E( )= Xρ λτ  is the load factor, bsE( ) =n U  is the average number of 

busy channels, 0E( )T  is the mean length of the idle period (period of time when there 
is no customers in the system), bsE( )T  is the mean length of the busy period. 

The results of studies, presented in this monograph, were published in the author’s 
papers [22, 24]. In the third chapter, we use the recurrence relations for the stationary 
characteristics of the queueing systems with threshold functioning strategies, 
obtained in [20, 21]. The results, presented in Sections 1.2.3, 1.2.5, 1.3.1-1.3.5, 3.3.4-
3.3.7, 3.4.4 and 3.4.5, is published for the first time. 
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1   SYSTEMS WITH REJECTIONS 
 
Queueing systems with rejections (without waiting) are employed to calculate the 

number of communications channels (physical or logical links) that is required to en-
sure the specified quality of service when information is transmitted in modern tele-
communications networks [5] and to solve the problems related to the investigations 
of circuit-switched networks, digital integrated-service networks, and adaptive ter-
minal measuring systems [16]. 

In this chapter, we examine the insensitivity of the stationary characteristics of sys-
tems with rejections, consisting of heterogeneous channels. Will be considered three 
ways of distribution of customers by channels of the system: equiprobable distribu-
tion by free channels, equiprobable distribution by all channels, and ordered distribu-
tion. 

The system where customers are equiprobably distributed by all channels can be 
used as the queueing model characterizing the violations in the control of customer 
distributions over servers. Such a system was discussed in [17] under the assumption 
of the exponential service-time distribution and homogeneous servers. Multiserver 
queueing systems with heterogeneous servers arise in various applications, in particu-
lar, they are an adequate model of the communication node of data transmission [6]. 

For the M/G/n/0  system with equiprobable distribution of customers by all chan-
nels we will use the notation 1/nM /G/n/0,  and let 1/n 1 nM /G , ,G /n/0…  denotes the cor-
responding system with heterogeneous channels. Under the heterogeneity of channels 
we mean unequal service-time distribution in different channels of the system. Let 

1 nM/G , ,G /n/0…  denotes the system with heterogeneous channels and ordered distri-
bution of customers by free channels. For the ordered distribution preference is given 
to the channel with the lowest number, and in the case of homogeneous channels, the 

1 nM/G , ,G /n/0…  system turns into the M/G/n/0  system. 
We denote by 1/n(free) 1 nM /G , ,G /n/0…  the system with heterogeneous channels, 

which applies equiprobable distribution of customers by free channels. In the case of 
homogeneous channels the 1/n(free)M /G/n/0  and M/G/n/0  systems coincide. 
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1.1  Systems with heterogeneous channels and equiprobable 
distribution of customers by free channels 
 

1.1.1  Insensitivity of the characteristics of the 1/n(free) 1 nM /G , ,G /n/0…  system 
 

Let us consider an 1/n(free) 1 nM /G , ,G /n/0…  queueing system with rejections, which 

involves n  heterogeneous channels (with different service time distributions) and 
receives the stationary Poisson flow of customers with intensity .λ  If all n  channels 
are busy at the instant of arrival, the failure of servicing occurs (i.e., a customer 
leaves the system without being processed). In the case when k  channels are busy, 
the customer comes to any of the free channels with probability 1/( ).−n k  In the i th 
channel, a customer service time is a random variable with distribution function 

( )iG x  and mathematical expectation .iτ  
It is of interest to consider the stationary characteristics 

lim ( ), 0 ,
→∞

= ≤ ≤k kt
p p t k n  

where ( )kp t  is the probability that customers are served by k  channels at instant .t  
Let ( )tν  denotes the number of busy channels at instant .t  Let us assume that, at a 

certain instant, ( )tν  is equal  k  (1 k n≤ ≤ ), under the condition of ( 0)− ≠t kν , and 
that numbers from 1 to k  be randomly assigned to channels employed at instant .t  
The assigned numbers remain in force until ( )tν  takes a new value. Let ( )j tξ  denotes 

the time interval between t  (service continues at time t ) and the instant when the j th 
device completes servicing. Then it is possible to consider the random process 

1 2 ( )( ) { ( ); ( ), ( ), , ( )}.= … tt t t t tνζ ν ξ ξ ξ  

Let us introduce the following notation: 

1 2

1 2

1 2 1 1 2 2

( , , , ) 1 2

1 1 2 2

( ; , , , ) { ( ) = ; ( ) < , ( ) < , , ( ) < },
( ; , , , )

{ ( ) = ; ( ) < , ( ) < , , ( ) < }, 0 .

=

=

= ≤ ≤

P

P
…

… …
…

…
k

k

k k k k

k i i i k

i i ki k

F t x x x t k t x t x t x
F t x x x

t k t x t x t x k n

ν ξ ξ ξ

ν ξ ξ ξ

 

Here, ( )
jji tξ  is the time interval between t  and the instant when the j th channel 

completes the service under the condition that, in this channel, the service time is dis-
tributed according to law ( ).

jiG x  Moreover, all possible ordered sets 1 2( , , , )ki i i…  are 

regarded to have no identical numbers and 1 ji n≤ ≤  for each value of .j  

It is obvious that ( ) ( ; , , , ),= ∞ ∞ ∞…k kp t F t  i.e., 
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lim ( ; , , , ).
→∞

= ∞ ∞ ∞…k kt
p F t  

Hence, to determine stationary probabilities ,kp  functions kF  must be found. 

Let us introduce the following notation: !/( )!= −k
nA n n k  is the number of k  

arrangements from ,n  

1 2 1 2

1 2 1 2

( , , , ) 1 2 ( , , , ) 1 2

( , , , ) lim ( ; , , , ),

( , , , ) lim ( ; , , , ).
→∞

→∞

=

=… …

… …

… …
k k

k k k kt

k i i i k k i i i kt

F x x x F t x x x

F x x x F t x x x
 

Theorem 1.1. If < ∞iτ  and 1 ,i n≤ ≤  then random process ( )tζ has an ergodic sta-
tionary distribution and stationary probabilities kp  are determined by the formulas 

1 2
1 2

0
=10

, , , 1; =1

1, 1 ; 1 ;

, 1 .
=

< < <

= ≤ ≤ = +

= ≤ ≤

∑

∑ ∏
…
…

j

k
k

n

k k k
k

k kn

k ik
i i i jn
i i i

p p p k n p
p

p k n
A
λ τ

                          (1.1) 

Proof. Since ( )tζ  is a piecewise linear process [7, p. 383], the validity of the first 
part of Theorem 1.1 follows from the ergodic theorem for piecewise linear Markov 
processes [7, p. 211]. 

When the behavior of process ( )tζ  is studied in the steady-state mode, it is neces-
sary to consider all cases favorable to event A  defined as 

1 1 2 2( ) ; ( ) < , ( ) < , , ( ) < ,+ = + + +… k kt h k t h x t h x t h xν ξ ξ ξ  
where > 0ix  and 1 .i k≤ ≤  In the case of the stationary Poisson input flow, the proba-
bility that more than one customer arrives during time h  is ( ).o h  Hence, there is a 
need to examine the cases favorable to event A  in time interval ( , )+t t h : (i) there 
was no arrivals of customers, (ii) a single customer was served, and (iii) a single cus-
tomer arrived. Let the service of more than one customer or the service together with 
a customer arrival can be terminated. Then, with allowance for the equality 

1 2

1 2
1 2

1 2 ( , , , ) 1 2
, , , 1;

1( , , , ) ( , , , ),
=

≠ ≠ ≠

= ∑ …
…
…

… …
k

k
k

n

k k k i i i kk
i i in
i i i

F x x x F x x x
A

 

and the reasoning reported in [7, pp. 384-385], the estimate can be derived as 

( )
1 2
1 2

1 1 1 2 2 2

, , , 1; =1

{ ( ) ; ( ) < , ( ) < , , ( ) < }

( ) 1 ( ) .
=

≠ ≠ ≠

= ≤ + ≤ + ≤ + ≤

≤ −∑ ∏

P

…
…

…

k
k

k k k

k kn

i jk j
i i i jn
i i i

t k x t x h x t x h x t x h

h G x
A

ν ξ ξ ξ

λ     (1.2) 
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Using arguments presented in [7, pp. 383-386] and estimate (1.2) applied to the de-
termination of functions 1 2( , , , ),…k kF x x x  we obtain the following equations fulfilled 
almost everywhere: 

1 2 1

1 2
1 2

=1

1( , , , ) 1 1 1
=1 , , , 1;

1 1 1 1 1

=1 1

(1 )

( , , , , , ) ( )
( 1)

( , , ,0, , , ) ( , , ,0)(1 )( 1) , 1 ,

−− − +
=

≠ ≠ ≠

− + +

+

∂
− − +

∂

+ =
− +

∂ ∂
= − − + ≤ ≤

∂ ∂

∑

∑ ∑

∑

…
…
…

… …

… … …

k k

k
k

k
k

kn k
j j

k n

k i i i j j k i j
j i i i

i i i

k
k j j k k k

kn
j j k

F F
x

F x x x x G x
k n k

F x x x x F x xk k n
x x

λ δ

λ

δ

  (1.3) 

where knδ  are the Kronecker symbols. 
Direct substitution confirms that the system of Eqs. (1.3) has almost everywhere 

the nonnegative, absolutely continuous solution of the form: 

( )
1 2
1 2

1 2 0
, , , 1; =1 0

( , , , ) 1 ( ) .
! =

≠ ≠ ≠

= −∑ ∏∫
…
…

…
j

j
k

k

xk kn

k k ik
i i i jn
i i i

F x x x F G u du
k A
λ                    (1.4) 

Since 

1 2 0,
1

lim ( , , , ) ,
→∞

≤ ≤

=…
j

k

k k kx
nj k

F x x x F
A
λ  

then under the normalization condition 

0
=0

1=∑
kn

k
k n

F
A
λ  

formulas (1.4) present the ergodic distribution of process ( ).tζ  In particular, when all 
coordinates tend to infinity, we obtain formulas (1.1). The theorem is proved.   

Remark 1.1. It follows from (1.1) that the stationary characteristics of the 

1/n(free) 1 nM /G , ,G /n/0…  system are insensitive with respect to the service-time distribu-

tions. 
For the 1/n(free) 1 nM /G , ,G /n/0…  system, the stationary probability of rejection is 

defined as 

rej 0
=1

P .= = ∏
n

n
n j

j

p p λ τ                                             (1.5) 

If the service-time means of all n  channels are identical, i.e., = ,iτ τ  1 ,i n≤ ≤  
equalities (1.1) provide the Sevastyanov formulas [18] for the M/G/n/0  system. 
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In the system with heterogeneous channels, it is of interest to calculate the utiliza-
tion coefficient of each server. Let iU  denotes the utilization coefficient of the chan-

nel with service-time mean iτ  and U  is the average number of busy channels. Since 

1 2 1
1 2 1

1

0
=1 =1 =2 , , , 1( ); =1−

−

−

= ≠
< < <

⎛ ⎞
⎜ ⎟= = +⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑ ∏
…

…

j

k
k

k kn n n n

k i ik
k i k i i i i jn

i i i

U kp p
A n
λ λτ τ  

and, on the other hand,  

=1

,=∑
n

i
i

U U                                                      (1.6) 

we have  

1 2 1
1 2 1

1

0
=2 , , , 1( ); =1

, 1 .
−

−

−

= ≠
< < <

⎛ ⎞
⎜ ⎟= + ≤ ≤⎜ ⎟⎜ ⎟
⎝ ⎠
∑ ∑ ∏

…
…

j

k
k

k kn n

i i ik
k i i i i jn

i i i

U p i n
A n
λ λτ τ                     (1.7) 

 
1.1.2  An example of calculation of the stationary characteristics  
 

Let 1 2 34, 2, 4, 3, 2,= = = = =n λ τ τ τ  and 4 1.=τ  Table 1.1 contains the stationary 
characteristics of the 1/n(free) 1 nM /G , ,G /n/0…  system. Their values were calculated ac-

cording to the formulas (1.1) and (1.5)-(1.7). For comparison, Table 1.1 presents the 
values of these characteristics obtained with the help of the GPSS World simulation 
system, which were determined at the simulation time 5

mod 10 .=T  Simulation results 
were obtained for the following service-time distributions: 

(a) uniform distributions on intervals [3, 5], [2, 4], [1, 3], and [0.5, 1.5] in the first 
to fourth channels, respectively; 

(b) exponential distributions with mean values 1 24, 3,= =τ τ 3 2,=τ  and 4 1=τ ; 
(c) deterministic values 1 24, 3,= =τ τ 3 2,=τ  and 4 1=τ ; 
(d) uniform distribution on the interval [3, 5], exponential distribution with the 

mean value 2 3=τ , the deterministic value 3 2=τ , and the uniform distribution on the 
interval [0.5, 1.5] in the first to fourth channels, respectively. 

Obtained data confirm the insensitivity of the stationary characteristics of the 

1/n(free) 1 nM /G , ,G /n/0…  system with respect to the service-time distributions. 
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Table 1.1 
 

Method,  
variant of the  
distributions 

 
0p  

 
1p  

 
2p  

 
3p  

 
4p  

 
1U  

 
2U  

 
3U  

 
4U  

 
U  

 
rejP  

Analytical 0.020 0.099 0.232  0.331 0.318 0.808 0.765 0.695 0.560  2.828  0.318
GPSS 

World, (a) 
0.019 0.100 0.233  0.330 0.318 0.809 0.765 0.694 0.560  2.828  0.319

GPSS 
World, (b) 

0.021 0.995 0.230  0.332 0.318 0.806 0.765 0.696 0.559  2.828  0.319

GPSS 
World, (c) 

0.020 0.098 0.235  0.330 0.316 0.809 0.763 0.695 0.557  2.823  0.317

GPSS 
World, (d) 

0.020 0.100 0.232  0.333 0.316 0.809 0.761 0.696 0.559  2.825  0.318

 

Let us give the text of the used program of GPSS World. 
; The model 1.1 
Lam   EQU 2   
Prej   VARIABLE 1-N$LT/N$L0  
Tmod   EQU 100000  
; Boolean variables 
Ver1234   BVARIABLE F1'AND'F2'AND'F3'AND'F4 
Ver123   BVARIABLE F1'AND'F2'AND'F3 
Ver124   BVARIABLE F1'AND'F2'AND'F4 
Ver134   BVARIABLE F1'AND'F3'AND'F4 
Ver234   BVARIABLE F2'AND'F3'AND'F4 
Ver12   BVARIABLE F1'AND'F2 
Ver13   BVARIABLE F1'AND'F3 
Ver14   BVARIABLE F1'AND'F4 
Ver23   BVARIABLE F2'AND'F3 
Ver24   BVARIABLE F2'AND'F4 
Ver34   BVARIABLE F3'AND'F4 
Ver1   BVARIABLE F1 
Ver2   BVARIABLE F2 
Ver3   BVARIABLE F3 
Ver4   BVARIABLE F4 
Dis   TABLE (F1+F2+F3+F4),0,1,7  
GENERATE 1 
TABULATE Dis 
TERMINATE 
GENERATE (Exponential(1,0,(1/Lam)))  
; Distribution of customers between the channels 
L0   TEST E BV$Ver1234,0,OUT 
TEST E BV$Ver123,0,L4 
TEST E BV$Ver124,0,L3 
TEST E BV$Ver134,0,L2 
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TEST E BV$Ver234,0,L1 
TEST E BV$Ver12,0,L5 
TEST E BV$Ver13,0,L6 
TEST E BV$Ver14,0,L7 
TEST E BV$Ver23,0,L8 
TEST E BV$Ver24,0,L9 
TEST E BV$Ver34,0,L10 
TEST E BV$Ver1,0,L11 
TEST E BV$Ver2,0,L14 
TEST E BV$Ver3,0,L17 
TEST E BV$Ver4,0,L20 
TRANSFER PICK,L23,L24 
L23   TRANSFER ,L1 
TRANSFER ,L2 
TRANSFER ,L3 
L24   TRANSFER ,L4 
L5   TRANSFER 500,L3,L4 
L6   TRANSFER 500,L2,L4 
L7   TRANSFER 500,L2,L3 
L8   TRANSFER 500,L1,L4 
L9   TRANSFER 500,L1,L3 
L10   TRANSFER 500,L1,L2 
L11   TRANSFER PICK,L12,L13 
L12   TRANSFER ,L2 
TRANSFER ,L3 
L13   TRANSFER ,L4 
L14   TRANSFER PICK,L15,L16 
L15   TRANSFER ,L1 
TRANSFER ,L3 
L16   TRANSFER ,L4 
L17   TRANSFER PICK,L18,L19 
L18   TRANSFER ,L1 
TRANSFER ,L2 
L19   TRANSFER ,L4 
L20   TRANSFER PICK,L21,L22 
L21   TRANSFER ,L1 
TRANSFER ,L2 
L22   TRANSFER ,L3 
; Channel 1 
L1   TRANSFER BOTH,,OUT 
SEIZE 1 
ADVANCE  (Uniform(1,3,5)) 
;ADVANCE  (Exponential(1,0,4)) 
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;ADVANCE  4 
RELEASE 1 
TRANSFER ,LT 
; Channel 2 
L2   TRANSFER BOTH,,OUT 
SEIZE 2 
ADVANCE  (Uniform(1,2,4)) 
;ADVANCE  (Exponential(1,0,3)) 
;ADVANCE  3 
RELEASE 2 
TRANSFER ,LT 
; Channel 3 
L3   TRANSFER BOTH,,OUT 
SEIZE 3 
ADVANCE  (Uniform(1,1,3)) 
;ADVANCE  (Exponential(1,0,2)) 
;ADVANCE  2 
RELEASE 3 
TRANSFER ,LT 
; Channel 4 
L4   TRANSFER BOTH,,OUT 
SEIZE 4 
ADVANCE (Uniform(1,0.5,1.5)) 
;ADVANCE  (Exponential(1,0,1)) 
;ADVANCE  1 
RELEASE 4 
LT   TERMINATE 
OUT   TERMINATE 
GENERATE Tmod 
SAVEVALUE Prj,V$Prej   
TERMINATE 1 
START 1 

 
1.1.3  The X

1/n(free) 1 nM /G , ,G /n/0…  system 
 

Let us consider the X
1/n(free) 1 nM /G , ,G /n/0…  system with batch arrivals. The interar-

rival times are independent, exponentially distributed random variables with parame-
ter λ. We introduce the notation: X is the number of customers in the batch, E(X) is 
the mathematical expectation of the random variable X, ak (1≤k≤L) is probability of 
the event {X=k}, and a1+a2+…+aL=1. 
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Let us prove that the stationary characteristics of the X
1/n(free) 1 nM /G , ,G /n/0…  system 

do not have the insensitivity property with respect to the form of the service-time dis-
tributions. 

Let n=2, and L=2. Let us calculate the stationary characteristics for two variants 
of the service-time distributions in the two channels of the system. 

Variant A. The exponential distributions with parameters 1µ  and 2µ  respectively. 
Let us enumerate the system’s states as follows: 0s  corresponds to the empty sys-

tem; 1s  is the state, when one channel is busy; 1,0s  is the state, when the first channel 

is busy, and second channel is free; 0,1s  is the state, when the first channel is free, and 

second channel is busy; 2s  is the state, when both channels are busy. We denote by 

ip  and , ,i jp  stationary probabilities that the system is in the state is  and ,i js  respec-

tively, then 1 1,0 0,1.= +p p p  To calculate the stationary probabilities, we obtain the 

system: 

0 1 1,0 2 0,1

1 1,0 1 0 2 2

2 0,1 1 0 1 2

0 1,0 0,1 2

0;
( ) 0,5 0;
( ) 0,5 0;

1.

− + + =

− + + + =

− + + + =

+ + + =

p p p
p a p p
p a p p

p p p p

λ µ µ

λ µ λ µ

λ µ λ µ
                                (1.8) 

Variant B. We have second-order Erlangian distribution with parameter 12µ  in the 
first channel, and exponential distribution with parameter 2µ  in the second channel. 

Using the method of phases, we represent the service time in the first channel, dis-
tributed according to the second-order Erlang law, in the form of 1 2.+T T  Here, the 
random variables 1T  and 2T  are distributed exponentially with parameter 12 .µ  

Let us enumerate the system’s states as follows: 0s  corresponds to the empty sys-

tem; ( )
1,0

is  is the state, when the first channel is busy and service occurs in the ith phase 

( 1,2=i ), and second channel is free; 0,1s  is the state, when the first channel is free, 

and second channel is busy; ( )
2
is  is the state, when both channels are busy and service 

occurs in the ith phase ( 1, 2=i ) in the first channel. We denote by (1)
0 1,0 0,1, , ,p p p  

(2) (1)
1,0 2,p p  and (2)

2p  respectively, stationary probabilities that the system is in the each 

of these states. To calculate the stationary probabilities, we obtain the system: 
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(2)
0 1 1,0 2 0,1

(2)
2 0,1 1 0 1 2

(1) (1)
1 1,0 1 0 2 2

(2) (1) (2)
1 1,0 1 1,0 2 2

(1) (1)
1 2 2 2 0 1,0 0,1

(1) (2) (1)
0 0,1 1,0 1,0 2 2

2 0;

( ) 0,5 2 0;

( 2 ) 0,5 0;

( 2 ) 2 0;

(2 ) ( ) 0;

− + + =

− + + + =

− + + + =

− + + + =

− + + + + =

+ + + + +

p p p

p a p p

p a p p

p p p

p a p p p

p p p p p p

λ µ µ

λ µ λ µ

λ µ λ µ

λ µ µ µ

µ µ λ λ
(2) 1.=

                           (1.9) 

Let 1 2 12, 1, 0.1, 0.25,= = = =aλ µ µ  and 2 0.75.=a  In Table 1.2 we present the 

stationary characteristics of the X
1/2(free) 1 2M /G ,G /2/0  system calculated by using the so-

lutions of the systems (1.8) and (1.9). 
Table 1.2 

 

Variant of the distributions 0p  1p  2p  E(Nc) rejP  
A 0.027233 0.331998 0.640769 1.613536 0.216946 
B 0.028264 0.330143 0.641593 1.613329 0.216918 

 

Note that =U E(Nc), since for the system with rejections the utilization coefficient 
is equal to the mean value Nc of the stationary number of customers in the system. 
Stationary value of the rejection probability is calculated as the ratio of the time-
weighted numbers of lost and arrived customers. Formulas to determine rejP  for the 

cases A and B have the form 

( )rej 1 1,0 2 0,1 1 2 2
1P 1 ( ) ;

E( )
= − + + +p p p

X
µ µ µ µ

λ
                       (1.10) 

( )(2) (2)
rej 1 1,0 2 2 0,1 2

1P 1 2 ( ) ( ) .
E( )

= − + + +p p p p
X

µ µ
λ

                   (1.11) 

The data of Table 1.2 show that the insensitivity property of the stationary charac-
teristics of the X

1/n(free) 1 nM /G , ,G /n/0…  system with respect to the form of the service-

time distributions is not saved. 
Remark 1.2. In the case when а2=1, the X

1/2(free) 1 2M /G ,G /2/0  system has the insen-

sitivity property of the values E(Nc) and rejP . However, in this case, the equiprobable 

distribution of customers by free channels, it is the same as the ordered distribution 
of the customers in the X

1 2M /G ,G /2/0  system. So, we give proof of the insensitivity 
when considering this system.  

 
 



16 

 

Buy the book 
To copy the address, click "Text Viewer" 
https://www.morebooks.de/store/gb/book/insensitivity-of-the-queueing-systems-characteristics/isbn/978-3-659-67419-8 
 


