Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci.
Mathematics, 40 (4), 40-48 (2020).

Reliability of a series system with redundancy and one repair facility
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Abstract. In this paper we propose a method for studying the reliability of series systems with redun-
dancy and one repair facility. The approach based on the use of fictitious phases and hyperexponential
approximations of arbitrary distributions by method of moments. We define conditions for the variation
coefficients of the gamma distributions and Weibull distributions, for which the best accuracy of calculat-
ing the steady-state probabilities is achieved in comparison with the results of simulation modeling.
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1 Introduction

Series systems of identical independent units with a common group of redundant units are
common in engineering practice. Formally, such a structure appears if a system consists of
units of several types [4]. A set of units of the same type can be considered as a series sys-
tem, for which there is a stock of spare units. It is reasonable to consider these spare units as
unloaded; these units wait for being switched into operating position after one of operating
units has failed. Failed units are directed to a repair shop, from where after recovery they
again enter the systems stock. Switching of spare unit into an operating position is usually
assumed instantaneous.

Recoverable series systems differ by their recovery processes. Assume that a system
continues to stay in an operational state after failure, so during recovering a currently failed
unit new failures may appear. In principle, in this case one can observe even a situation
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when all system units have failed. It can happen if, for instance, a recovery process is very
slow. In addition, the number of repair facilities can be restricted, so failed units can form a
queue for recovering. We restrict ourselves to one repair facility.

Consider a system that consists of » = n + m identical units, namely, n main operating
units and m unloaded redundant units. The system stops functioning in normal mode at the
moment when the number of failed units reaches m + 1. Assume that those 7 — 1 units that
were serviceable at the moment of system failure, in idle time during recovery, continue to
operate and may fail.

If we consider the described system as a single-channel queueing system, then in the
absence of redundant units (m = 0), it is a classical closed queueing system [2]. The closed
system is also known as a system with a finite number of sources or the Engset system.

In most academic approaches, a random time to failure and a random recovery time are
assumed exponentially distributed for all units that gives a possibility to use the Markov
model for reliability study. In this paper we consider arbitrary distributions of the units’
time to failure and recovery time.

The method of potentials was used in [5] to construct an algorithm that makes it possible
to calculate the steady-state distribution of the number of failed units for a single-channel
closed system with an exponential distribution of the units’ time to failure and an arbitrary
distribution of recovery time. This method is not suitable for arbitrary distributions of the
units’ time to failure.

In [2] we propose a method for calculating steady-state probability distributions of the
closed queueing systems with exponential distribution of the time to failure and an arbitrary
distribution of recovery time. The approach based on the use of fictitious phases and hyper-
exponential approximations by method of moments. We consider queueing systems with
the number of channels n = 1, 2 and 3.

Works [1-3, 6, 7] show that the use of hyperexponential approximation (H;) makes it
possible to determine with high accuracy the steady-state probabilities of non-Markovian
queuing systems. These probabilities are calculated using solutions of a system of linear
algebraic equations obtained by the method of fictitious phases. To find parameters of the
H;-approximation of a certain distribution it is sufficient to solve the system of equations
of the moments method. For the values V' < 1 of the variation coefficient, roots of this sys-
tem are complex-valued or paradoxical (i.e., negative or with probabilities that exceed the
boundaries of the interval [0, 1]), but in most cases as a result of summation of probabilities
of microstates, their complex-valued and paradoxical parts are annihilated.

The purpose of the paper is to use of the hyperexponential approximation method for
studying the reliability of series systems with redundancy and one repair facility with arbi-
trary distributions of the units’ time to failure and recovery time. We define conditions for
the variation coefficients of the gamma distributions and Weibull distributions, for which
the best accuracy of calculating the steady-state probabilities is achieved in comparison
with the results of simulation modeling.

Let pi be the steady-state probability of having k failed units, then the stationary relia-
bility indices of the system are determined by the formulas:

m r r—1 r—1
K=>"pr, N=) kp, Q=) kpeyr, W=Q/A, A=) Apy,
k=0 k=0 k=1 k=0

n/T, 0<k<m
A =
(r—=k)/T, m+1<k<r-1.
Here K is the stationary availability coefficient, IV is the average number of failed units,

Q is the average queue for recovering, W is the mean waiting time for recovering and 7" is
the mean time to failure of an unit.
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2 Equations for steady-state probabilities

The hyperexponential distribution of order [ is a phase-type distribution and provides for
choosing one of [ alternative phases by a random process. With probability y;, the process
is in the ith phase during an exponentially distributed time with a parameter ;.

Suppose that the units’ time to failure is distributed according to the hyperexponen-
tial law H, with probabilities o; and parameters A; (1 < ¢ < 4) and the units’ recovery
times are independent random variables distributed according to the hyperexponential law
H; (I > 2) with probabilities 35 and parameters us (1 < s < [). Let us denote the corre-
sponding queueing system by Hy/H;/1/r and we will use it for approximate calculation
of the steady-state probabilities of the G/G/1/r queueing system. We restrict ourselves to
considering the H, distribution, since calculations show that such an order of hyperexpo-
nential distribution provides sufficient accuracy for approximating an arbitrary distribution
of the time to failure.

Let us enumerate the Hy/H;/1/r system’s states as follows: To(i,j,u,v) 1S the state, when
there are O failed units, and %, j, u, v are the numbers of units for which the time to failure
is in the first, second, third and fourth phase, respectively; @y (; j 0,5 18 the state, when
there are k failed units (1 < k < r), and 4, j, u, v are the numbers of units for which the
time to failure is in the first, second, third and fourth phase, respectively, and s is the phase
number of recovery time. We denote by po(; ju,0) a0d D (i j u,v,s), Steady-state probabilities
that the system is in the each of these states respectively. Since the process of changing the
states of the system is Markovian with continuous time, for the steady-state probabilities
P0(i,j,u,w) A Pr(i ju,,s) WE Obtain a system of linear algebraic equations that follows from
the Kolmogorov system of differential equations.

Let us write the equations corresponding to the states Zo(,,0,0,0)s Z0(0,1,0,0)s

Z0(0,0,n,0) a0d Zo(0,0,0,n)

l l

—nA1Po(n,0,0,0) T Z HiP1(n,0,0,0,i) = 0, —nA2Po(0,n,0,0) Z HiP1(0,n,0,0,i) = 0,
i—1 i—1
l !
—nA3P0(0,0,n,0) T Z HiP1(0,0,n,0,i) = 0, —nA4Po(0,0,0,n) T Z HiP1(0,0,0,n,i) = 0.
i—1 i=1

On the example of the equation corresponding to the state q(; ,,—,0,0), We show what is
the structure of the equations for the states o 0n-i0)  L0(1,0,0,n—i)>
Z0(0,i,n—14,0)> L0(0,,0,n—1) and Z0(0,0,4,n—1) *

!
—(iA1 + (n = )A2) Po(in—i00) + Z HiP1(in—i,0,0,5) = 0, I<i<n-1L
j=1
Let us write the equation corresponding to the state Zq(; j n—i—j,0) :
l
— (i1 + A2 + (n— i — 5)A3)Poijn—i—s0) + Zﬂspl(i,j,nfifj,(),s) =0,

s=1

1<i<n—-2, 1<5<n—-1—u.

2.1)

The equations for the states zo(; j 0.n—i—j)s Z0(,0,j,n—i—j) ad To(0,i,j,n—i—j) have a similar
structure with (2.1).
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Let us write the equation corresponding to the state Z(; j s.n—i—j—s) :

!
—(iIAM A+ A+ sA3+(n—i—j— 8))‘4)p0(i,j,s,n—i—j—s) + Zﬂupl(i,j,s,n—i—j—s,u) =0,

u=1

1<i<n—-3, 1<j5<n—-2—-4, 1<s<n—-1—1—.

Let us give examples of equations corresponding to the states 1(,,0,0,0,)
T1(0,n,0,053)»  L1(0,0,n,0,4)s  L1(0,0,0,n,i)>  L1(i,n—14,0,0,5)>  L1(3,0,n—3,0,5)>  L1(4,0,0,n—i,5)>
L1(0,i,n—1%,0,5) > £1(0,4,0,n—1,5)» L1(0,0,i,n—1,5)» L1(i,j,n—i—74,0,8)» L1(4,5,0,n—i—j,s)» L1(4,0,j,n—i—j,s) >
L1(0,i,j,n—i—j,s) and L1(4,4,8,n—i—j—s,0) *

l
— (PA1 + 1) P1(n,0,0,0,0) + Bi Z 13P2(n,0,0,0.4) + @15 (MA1P0(n,0,0,0)
j=1
+ A2Po(n—1,1,0,0) T A3P0(n—1,0,1,0) + MPo(n-1,001)) =0, 1<i <
l

— (Ml +(n—1i)A + uj)pl(i,n_@o,o,j) + B; Z HsD2(i,n—i,0,0,5) T @155 (i)‘lpo(i,n—i,0,0)
s=1

+ (0 + 1 = ) A2Po(i—1,n41-4,0,0) T A3P0(i—1,n—1,1,0) T MPO(i—1,n—,0,1))
+ 23 (i + 1)A1Po(i+1,n—1-1,0,0)
+ (n — 1) A2Po(i,n—4,0,0) T A3P0(i,n—1—1,1,0) + AMPo(in—1-i,01)) = 0,
1<i<n—1, 1<j<I
I
— (iM + JAa+ (0 — i — 5)X3 + ) D1 jin—i—j0,5) T+ Os Z HuD2(i,5,n—i—j,0,u)

u=1
+ 1B (iMPo(ijn—i—j0) T (F + DA2Poi—1,j41,n—i—5,0)
+n+1—i- j))\Spo(ifl,j,nJrlfifj,O) + )\4p0(i71,j,nfifj,1))
+ 2B (i + 1)A1Po(i+1,j—1,n—i—j,0) T TA2P0Gjin—i—5,0)
+ (n+1 =10 — 5)A3Do(i,j—1,n41—i—5,0) + AP0Gj—1,n—ij,1))
+ @38 (( + 1)A1Po(i+1,jn—1—i—j,0) + (F + D A2Doi j+1,n—1-i—5,0)
+(n—i— j))\3p0(i,j,n—z‘—j,0) + )\4p0(i,j,n—1—i—j,1)) =0,
1<i<n—-2, 1<j<n—-1—4, 1<s<1;
— (M + Ao+ 53+ (0 — i = — $)M + L) P1(ijsn—ivj—s,u)

1

+ By Z HoD2(3,5,8,n—i—j—s,v)

v=1
+ Buo (i/\lpl)(i,j,s,nfifjfs) + (7 + D A2D0(i—1,j41,5,n—i—j—s)
+ (s + 1)A3P0(i1j,s1,n—i—j—s) (M + 1 =i = J — $)MaPo(i—1,j,5:n+1—i—j—s))
+ Bu2 (i + 1)A1P0(i41,j—1,5,n—ivj—s) T AP0 j,5m—i—j—s)

+ (s + DA3P0(i,j— 1,5+ 1m—i—j—s) + (M +1 =i —j — $)MaPo(i j—1,smt1—i—j—s))
+ Buas ((i + DA1PO(i41,j,5—1,n—i—j—s) T (T + D) A2Po(i j+1,6-1,n—i—j—s)
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+ 3A3p0(i,j,s,n—i—j—s) + (n +1-1-7- 3))\4p0(i,j,s—1,n+1—i—j—s))

+ Bua (7 + 1)MPo(i41,j,5m—1—i—j—s) + (F + 1)X2P0 j4+1,5m—1—i—j—s)

+ (s + 1))\3p0(i,j,s+1,n—1—i—j—s) +(n—i—j— S))‘4p0(i,j,s,n—i—j—s)) =0,
1<i<n-3, 1<j<n—-2—-4, 1<s<n—-1—-i—3, 1<u<l.

The structure of equations corresponding to the states Zp(,.0,0,0,i); Zk(0,1,0,0,)s
Tk(0,0,n,0,i)>  Lk(0,0,0,n,3)r  Lk(i,n—i,0,0,5)s LTk(i,0,n—i,0,5)s Lk(,0,0,n—i,5)> Lk(0,i,n—14,0,5)>
Tk(0,3,0,n—1,5)> Lk(0,0,i,n—1,5) Tk(i,j,n—i—4,0,8) Tk(i,5,0,n—i—j,s)> Tk(i,0,j,n—i—j,s)>
Th(0,i,j,n—i—j,s) AN Tp( j s n—i—j—s,0) TOT Kk € {22 3,...,m—1} differs from the structure of
equations (2.2) only in the absence of the multiplier 3; before the probabilities Ph—1(ri)

!
— (PAL + 140)Pk(n,0,0,0,5) T+ Bi Z 145 Pk41(n,0,0,0,5) T 1 (RALDPE—1(n,0,0,0,4)
=1
+ A2Dk—1(n—1,1,0,0,4) T A3Dk—1(n—1,0,1,0,4) T MPk—1(n—1,0,0,1,1)) = 0,
2<k<m—1, 1<i<l;

!
— (i1 + (0 — D) A2 + 145) Pr(in—i0,0.5) + B Z HsPk+1(i,n—i,0,0,5)
s=1

+ 1 (IM PR 1(i;n—1,0,0,5) + (M + 1 = 1) X2Pk—1(1—1,04+1-4,0,0,) T A3Dk—1(i—1,n—3,1,0,5)

+ )\4pk—1(i—1,n—i,0,1,j))

+ a2((7 + DAMPr—1(i+1,0-1-4,0,0,5) T (M = DA2Pr—1(1,0-1,0,0,) + A3Pk—1(i,n—1—i,1,0,5)

+ MDy—1(in-1-i01) =0, 2<k<m—-1, 1<i<n-1, 1<;j<I

Let us give examples of equations corresponding to the states Zp(r—0,0,0,i);
LTr(0,r—k,0,08)>  Tk(0,0,—k,0,8)s  Tk(0,00,r—kyi)>  Th(i,r—k—i,0,0,)»  Tk(5,0,r—k—i,0,5)
Lk(i,0,0,r—k—i,5)>  LTk(0,4,r—k—i,0,7)> Lk(0,i,0,r—k—1,5)>  Lk(0,0,i,r—k—1,5)> Lk(i,jr—k—i—75,0,5)s
Th(i,§,0,r—k—i—j,s)>  Th(i,0,jr—k—i—j,s)s Th(0,ijr—k—i—j,s) AN Tr(ijsr—k—i—jsw) fOI
ke{m+1,m+2...,r—1}
1
- ((7" — k) + Nz‘)pk(r—k,o,o,o,i) +a15; Z HiPk+1(r—k—1,0,0,0,5)
=1
+ (1 =k + 1)MPr_1(r—k+1,0,0,0,i) T A2Pk—1(r—k,1,0,0,i) T A3Pk—1(r—k.0,1,0,3)
+ MPk—1(r—k00,145) =0, m+1<k<r—-1 1<i<lI;

!
— (iM+ (r =k — )2 + 15) Prir—k—i0,0,5) T Bi Z s (Q1DR41(i—1,r—k—i,0,0,5)
s=1
+ Pkt 1(ir—k—i-1,0,0,8)) T (0 + DAPE_1 (61,0 k—3,0,0,5)
+(r =k =i+ 1) Xapp_1(ir—k—i+1,0,0,5) T A3Pr—1(i;r—k—i,1,0,5)
+ Mpk—1(ir—k—i015) =0, mH+1<k<r-2 1<i<r—-k-1 1<j<Ii
— (M + Ao+ (r—k —i—5)A3 + 1) Ph(i,jr—k—ieyj0,5)
!
+ Bs Z Mo (alpk+1(i—l,j,r—k—i—j,o,u) + Q2P 1(i,j—1,r—k—i—75,0,u)
u=1

+ 3Pk 136 —h—i—i—1,00)) F (E+ DA 1(i41,5r—k—i—7.0,5)
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+ (J + D) A2Pk—1(ij+1,r—k—i—j,0,5) T (1 =k — 8 — 5 + D)A3PL—_1(i j,r—k—i—j+1,0,)
+ MPr—1(i,jr—k—i—j1,5) = 0,

m+1<k<r—-3, 1<i<r—k—-2 1<j<r—k—1—-1, 1<s<l;
— (M ihe+ A3+ (r—k —i—J — )1+ f) Pr(ijos,r—k—ivj—su)

+ Bu Z f (OUDR 1 (11 s — ki —s,0) T C2PRA1(6 15— ki j—5,0)
v=1

+ A3Pk+1(i,5,5—1,r—k—i—j—s5,0) + a4pk+1(z’,j,s,r—k—z'—j—s—1,v))

+ (0 4+ D)MPr—1(i41,j,s,r—k—i—j—su) T (J + D A2DR_1(6,j41,5,r—k—imj—s,u)
+ (8 + DA3Pr—1(i,j,s41,r—k—im—j—s,u)
+(r—k—i—j—s5+1)NPp_1(ij,sr—k—i—j—st+1,u) = 0
m+1<k<r—4, 1<i<r—k-3, 1<j<r—k—1-2,

1<s<r—-k—i—j5-1, 1<u<l.

Let us write the equation corresponding to the state 2,.(9,0,0,0,4) *

—[iPr(0,0,0,0,i) + AMPr-1(1,0,0,0,5) + A2Pr-1(0,1,0,0,i) + A3Pr—1(0,0,1,0,0)
+Aapr—1000,0,1,4) =0, 1<i<IL.

The normalization condition closes the system of equations for steady-state probabilities:

n’LTLZJ m nzan

ZZZPO 7]75777'7']5—1_2 Zzzpk (3,,8,n—i—j—s,u)

1=0 j=0 s=0 k=11i=0 j=0 s=0 wu=1
r  r—kr—k—ir—k—i—j
0

l
" Z Zpk(i7j,s,7“—k—i—j—57u) =1.

k=m+1 =0 j= s=0 wu=1

Solving the system obtained by the method of fictitious phases, we find the steady-state
probabilities pj, of having k failed units, using the formulas

n—in—i—j

pO—ZZ Z Po(i,j,s,n—i—j—s)>

=0 j=0 s=0
n n—in—i—j I
Pk = Z Pk(i,5,5,n—i—j—s,u)s 1<k<m
1=0 j=0 s=0 wu=1
r—kr—k—ir—k—i—j [

Pk(ij,sr—k—i—j—su)s M+ 1< k<r.

3 Numerical results

Let I'(V), W(V) and Ula, b] denote the gamma distribution, Weibull distribution with
coefficients of variation V, and uniform distribution on the interval [a, b], respectively.
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Table 1 List of distributions D1 and D2 for which condition A 5y < 10~* holds

Dy Do Values of Vo Dy Do Values of V1
I'(0.001) I'(Va) [0.7, 1.5] r(w) I'(0.001) 04,0.51,[0.7, 100]
I .001) Ww(v2) [0.8,1.2] W (Vi) I'(0.001) [0.4,10]
I'(0.4) (V) [0.001,0.3], [0.51, 1.6] I'(V4) I'(0.4) 0.3, [0.8, 100]
I(0.4) W (V2)  [0.001, 1.3] W((Vh) I(0.4) [0.3, 10]

W (0.4) r(va) [0.001, 1.6] w((vi) W(0.4) [0.3, 10]

W (0.4) W (V2)  [0.001, 1.3] r(w) W (0.4) [0.3, 100]
UJo, 8] (V) [0.001, 1.4] r(w) UJ[0,2] [0.3, 100]
U[0, 8] W(Va)  [0.001,1.3] w (Vi) U0,2] [0.3, 10]
I(0.8) r(va) [0.001, 1.8] r(w) I'(0.8) [0.001, 100]
I(0.8) W(Va)  [0.001, 1.4] wW(V1) I(0.8) [0.001, 10]
W(0.8) (V) [0.001, 1.8] r(w) W (0.8) [0.001, 100]
W(0.8) W (V2)  [0.001, 1.4] w((Vi) W(0.8) [0.001, 10]
I'(1.3) (V) [0.001, 1.6] r(v) I'(1.3) [0.001, 100]
I(1.3) W (V2)  [0.001, 1.4] W) I'(1.3) [0.001, 10]
W(1.3) (i) [0.001, 1.7] r(w) W(1.3) [0.4, 100]
W(1.3) W (V2)  [0.001, 1.4] w((vi) W(1.3) [0.4, 10]
I'(100) () [0.001, 1.5] rw) (2 -

I"(100) W(Va)  [0.001,1.3] W) I'(2) -

W(10) r'(va) [0.001, 1.8] r(w) W (2) -

W (10) W (V2)  [0.001, 1.4] W) W(2) -

In this section we present the results of using the Hy/Hjs/1/r and Hy/Hg/1/r systems
to calculate the probabilities py, for the G/G/1/r series recoverable system with redun-
dancy. We consider the gamma distributions, Weibull distributions and uniform distribu-
tions of units’ time to failure (named distribution D;) and units’ recovery time (named
distribution D>).

.
For the M /G'/1/r queueing systems the deviation Ay = Y |Pr—Pr(sim)| of distribu-
k=0
tion {py(sim) }, obtained using the GPSS World simulation system [8], from the distribution
{pr}, obtained using the method of potentials, exceeds 10~ [7]. This statement is con-
firmed if we calculate Ag;, for the considered series system with exponential distributions
of the units’ time to failure and recovery time. The GPSS World simulation model of the
series recoverable system with redundancy is constructed in [9].

We determine the values of the variation coefficients of the I"(V') and W (V') distri-
butions, for which the condition A5 < 10~* holds. If this condition is fulfilled, the
distribution {pk(ﬁ)} is a more accurate approximation to the true steady-state distribu-
tion {py}, than the distribution obtained using the GPSS World simulation system. Here

T

Aes) = ’;0 |Pk(6) — Pr(5)| gives an opportunity to estimate the deviation of distributions

{Pr(6)} from distributions {py ()}, where py;y are values of probabilities pj, obtained using
the Hy/H;/1/r system as an approximation of the G/G/1/r system.

Letustaken =4, m = 3,7 = 4 and 7 = 1, where 7 is the mean units’ recovery time.
Thus, the average values of the distributions D and D5 are equal to 4 and 1 respectively.

The numerical results are presented in Table 1. Of all the intervals corresponding to the
I'(V) distributions, the values V = 0.5 and V = 1/4/2 of the variation coefficient should
be excluded, since for the I"(0.5) distribution it is not possible to construct approximations
with the help of hyperexponential distributions of order higher than the third, and hyperex-
ponential approximations do not exist for the 1"(1/+/2) distribution.

The data in Table 1 show that a high accuracy of approximation is achieved for a wider
range of values of the variation coefficient of the distribution D; compared to the distribu-
tion Dy. Namely, for the distribution D1, the maximum interval for the variation coefficient
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Table 2 Results of the calculation of steady-state reliability indices for different distributions D1 and Do

D, Dy N K w Ae,5)

r(0.001)  W(0.6) 2419 0798 1.583 2.30-1076
r(0.001) I(0.7) 2436 0776 1.641 3.56-1078
r(0.001) W(0.8) 2484 0748 1737 2.70-1076
r(.001) I(1.3) 2654 0670 2169 3.67-107°
r(0.001) I'(1.5) 2720  0.649 2347 8.90-107°
W(0.4) r(0.001) 2305 0.868 1396 2.41-1076
W (0.5) r(0.001) 2347 0834 1472 3.54-1077
r(.7) r(.001) 2425 0778 1617 2.86-1076
r(0.001) 2461 0753 1.690 4.69-10~7

) 2696 0628 2177 9.18-106

) 2659 0.645 2100 3.88-107%

) 3284 0363 3599 9.28-107F

r0.4) r(.1) 2321 0864 1415 2.26-1076
r(0.4) r(0.3) 2356  0.834 1480 6.06-10~7
r(.4) W (0.4) 2391 0811 1542 8.54-1077
r0.4) W(1.3) 2652 0667 2177 7.70-107°
r(.4) r(.e 2,755 0.634 2450 7.10-107°
I(0.3) 0.4 2359  0.833 1484 2.30-107°

)
)
) 2356 0.833 1482 2.13-1076
r(.4) 2498 0731 1770 4.40-10~7
) 2,672 0.640 2140 8.02-10~7
) 3281 0364 3595 4.06-107°
) w(0.1) 2312 0864 1407 2.12.1076
) r.49) 2408 0.792 1.586 4.02.107°
W (0.4) W (1.3) 2,655 0.665 2181 7.12-107°
) I(1.6) 2.757 0.632 2454 6.88-107°
) 2371 0.831 1497 3.18-1076
) 2368 0.831 1495 2.85-107°
r(0.6) W (0.4) 2442 0769 1.650 3.28-1076
) 2.674 0.639 2142 3.69.1078
) 3281 0364 3595 3.11-107°
)

Ulo, 8] w(0.1 2376 0801 1542 1.08.-10~6
Ulo, 8] Ul0,2] 2511 0731 1782 6.37-1076
Ulo, 8] W (0.9) 2.588 0.687 1978 1.64-10"7
UJo, 8] Ir(1.4) 2,729  0.633 2350 1.19-107°
r(0.3) U0, 2] 2463 0775 1.655 2.83-107°
W(0.4) Ul0,2] 2474 0763 1.688 7.91-1076
W (10) Ulo,2] 2,697 0.631 2199 5.50-10~7
I(100) Ulo,2] 3273 0366 3.584 2.97-107°
r(0.8) W (1.3) 2702 0.640 2287 3.23-107°
r(.s) r(1.4) 2740  0.628 2381 9.93.1076
r(.s) W(1.4) 2722 0.634 2347 9.67-107°
r(.8) Ir(1.8) 2.834  0.602 2.666 7.99-10~5
r(0.6) r(0.8) 2543 0709 1.880 1.11-1076
r(1.5) r(.s) 2757 0603 2344 2.27-1077
W (10) r(.8) 2714 0625 2259 3.72-10~7
I(100) r(0.8) 3271 0367 3582 3.80-1077
w (0.8 W(1.4) 2726  0.632 2355 9.58.107°

)
W (0.8) r(1.8) 2.837  0.600 2671 7.56-107°
) 2549 0706 1.888 3.59-1076
W (10) W (0.8) 2716 0.624 2263 3.66-10"8
) 3270 0367 3.580 1.33-107°

r2) 0.49) 2843 0562 2512 4.45-10~8
r(2) r(1.5) 2935 0532 2824 8.36-10°°
W (2) r0.49) 2769 0600 2346 4.78-10~8
W(2) I(1.5) 2880 0562 2706 3.27-1075

is [0.001, 100] for the gamma distributions, and it is [0.001, 10] for the Weibull distributions.
For the distribution Dy, the maximum interval for the variation coefficient is [0.001, 1.8] for
the gamma distributions, and it is [0.001, 1.4] for the Weibull distributions.
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The results of calculation of reliability steady-state indices for different distributions Dy
and Dy are given in Table 2. The presented results show that an increase in the variation
coefficient of distributions D and D> leads to an increase in the average number of failed
units /V and the mean waiting time for recovering W and to a decrease in the stationary
availability coefficient of the system K.

4 Conclusions

This paper shows that the application of hyperexponential approximations of distributions
of the units’ time to failure and recovery time allow us to calculate steady-state probabilities
of the series recoverable system with redundancy and one repair facility. We find these prob-
abilities using solutions of a system of linear algebraic equations obtained by the method
of fictitious phases. To obtain parameters of H;-approximation of a certain distribution, it is
necessary to solve the system of equations of the moments method. Computing the devia-
tions A5y allows us to track the accuracy of approaching distributions {py(;)} to the true
distribution {py } without the need of using simulation models. We defined conditions for
the variation coefficients of the gamma distributions and Weibull distributions, for which
the best accuracy of calculating the steady-state probabilities is achieved compared with the
case of using simulation models.
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