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Abstract. In this paper we propose a method for studying the reliability of series systems with redun-
dancy and one repair facility. The approach based on the use of fictitious phases and hyperexponential
approximations of arbitrary distributions by method of moments. We define conditions for the variation
coefficients of the gamma distributions and Weibull distributions, for which the best accuracy of calculat-
ing the steady-state probabilities is achieved in comparison with the results of simulation modeling.
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1 Introduction

Series systems of identical independent units with a common group of redundant units are
common in engineering practice. Formally, such a structure appears if a system consists of
units of several types [4]. A set of units of the same type can be considered as a series sys-
tem, for which there is a stock of spare units. It is reasonable to consider these spare units as
unloaded; these units wait for being switched into operating position after one of operating
units has failed. Failed units are directed to a repair shop, from where after recovery they
again enter the systems stock. Switching of spare unit into an operating position is usually
assumed instantaneous.

Recoverable series systems differ by their recovery processes. Assume that a system
continues to stay in an operational state after failure, so during recovering a currently failed
unit new failures may appear. In principle, in this case one can observe even a situation
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when all system units have failed. It can happen if, for instance, a recovery process is very
slow. In addition, the number of repair facilities can be restricted, so failed units can form a
queue for recovering. We restrict ourselves to one repair facility.

Consider a system that consists of r = n+m identical units, namely, n main operating
units and m unloaded redundant units. The system stops functioning in normal mode at the
moment when the number of failed units reaches m+1. Assume that those n− 1 units that
were serviceable at the moment of system failure, in idle time during recovery, continue to
operate and may fail.

If we consider the described system as a single-channel queueing system, then in the
absence of redundant units (m = 0), it is a classical closed queueing system [2]. The closed
system is also known as a system with a finite number of sources or the Engset system.

In most academic approaches, a random time to failure and a random recovery time are
assumed exponentially distributed for all units that gives a possibility to use the Markov
model for reliability study. In this paper we consider arbitrary distributions of the units’
time to failure and recovery time.

The method of potentials was used in [5] to construct an algorithm that makes it possible
to calculate the steady-state distribution of the number of failed units for a single-channel
closed system with an exponential distribution of the units’ time to failure and an arbitrary
distribution of recovery time. This method is not suitable for arbitrary distributions of the
units’ time to failure.

In [2] we propose a method for calculating steady-state probability distributions of the
closed queueing systems with exponential distribution of the time to failure and an arbitrary
distribution of recovery time. The approach based on the use of fictitious phases and hyper-
exponential approximations by method of moments. We consider queueing systems with
the number of channels n = 1, 2 and 3.

Works [1–3, 6, 7] show that the use of hyperexponential approximation (Hl) makes it
possible to determine with high accuracy the steady-state probabilities of non-Markovian
queuing systems. These probabilities are calculated using solutions of a system of linear
algebraic equations obtained by the method of fictitious phases. To find parameters of the
Hl-approximation of a certain distribution it is sufficient to solve the system of equations
of the moments method. For the values V < 1 of the variation coefficient, roots of this sys-
tem are complex-valued or paradoxical (i.e., negative or with probabilities that exceed the
boundaries of the interval [0, 1]), but in most cases as a result of summation of probabilities
of microstates, their complex-valued and paradoxical parts are annihilated.

The purpose of the paper is to use of the hyperexponential approximation method for
studying the reliability of series systems with redundancy and one repair facility with arbi-
trary distributions of the units’ time to failure and recovery time. We define conditions for
the variation coefficients of the gamma distributions and Weibull distributions, for which
the best accuracy of calculating the steady-state probabilities is achieved in comparison
with the results of simulation modeling.

Let pk be the steady-state probability of having k failed units, then the stationary relia-
bility indices of the system are determined by the formulas:

K =

m∑
k=0

pk, N =

r∑
k=0

kpk, Q =

r−1∑
k=1

kpk+1, W = Q/Λ, Λ =

r−1∑
k=0

Λkpk,

Λk =

{
n/T, 0 ≤ k ≤ m;

(r − k)/T , m+ 1 ≤ k ≤ r − 1.

Here K is the stationary availability coefficient, N is the average number of failed units,
Q is the average queue for recovering, W is the mean waiting time for recovering and T is
the mean time to failure of an unit.
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2 Equations for steady-state probabilities

The hyperexponential distribution of order l is a phase-type distribution and provides for
choosing one of l alternative phases by a random process. With probability yi, the process
is in the ith phase during an exponentially distributed time with a parameter θi.

Suppose that the units’ time to failure is distributed according to the hyperexponen-
tial law H4 with probabilities αi and parameters λi (1 ≤ i ≤ 4) and the units’ recovery
times are independent random variables distributed according to the hyperexponential law
Hl (l ≥ 2) with probabilities βs and parameters µs (1 ≤ s ≤ l). Let us denote the corre-
sponding queueing system by H4/Hl/1/r and we will use it for approximate calculation
of the steady-state probabilities of the G/G/1/r queueing system. We restrict ourselves to
considering the H4 distribution, since calculations show that such an order of hyperexpo-
nential distribution provides sufficient accuracy for approximating an arbitrary distribution
of the time to failure.

Let us enumerate theH4/Hl/1/r system’s states as follows: x0(i,j,u,v) is the state, when
there are 0 failed units, and i, j, u, v are the numbers of units for which the time to failure
is in the first, second, third and fourth phase, respectively; xk(i,j,u,v,s) is the state, when
there are k failed units (1 ≤ k ≤ r), and i, j, u, v are the numbers of units for which the
time to failure is in the first, second, third and fourth phase, respectively, and s is the phase
number of recovery time. We denote by p0(i,j,u,v) and pk(i,j,u,v,s), steady-state probabilities
that the system is in the each of these states respectively. Since the process of changing the
states of the system is Markovian with continuous time, for the steady-state probabilities
p0(i,j,u,v) and pk(i,j,u,v,s) we obtain a system of linear algebraic equations that follows from
the Kolmogorov system of differential equations.

Let us write the equations corresponding to the states x0(n,0,0,0), x0(0,n,0,0),
x0(0,0,n,0) and x0(0,0,0,n) :

−nλ1p0(n,0,0,0) +
l∑

i=1

µip1(n,0,0,0,i) = 0, −nλ2p0(0,n,0,0) +
l∑

i=1

µip1(0,n,0,0,i) = 0,

−nλ3p0(0,0,n,0) +
l∑

i=1

µip1(0,0,n,0,i) = 0, −nλ4p0(0,0,0,n) +
l∑

i=1

µip1(0,0,0,n,i) = 0.

On the example of the equation corresponding to the state x0(i,n−i,0,0), we show what is
the structure of the equations for the states x0(i,0,n−i,0), x0(i,0,0,n−i),
x0(0,i,n−i,0), x0(0,i,0,n−i) and x0(0,0,i,n−i) :

−
(
iλ1 + (n− i)λ2

)
p0(i,n−i,0,0) +

l∑
j=1

µjp1(i,n−i,0,0,j) = 0, 1 ≤ i ≤ n− 1.

Let us write the equation corresponding to the state x0(i,j,n−i−j,0) :

−
(
iλ1 + jλ2 + (n− i− j)λ3

)
p0(i,j,n−i−j,0) +

l∑
s=1

µsp1(i,j,n−i−j,0,s) = 0,

1 ≤ i ≤ n− 2, 1 ≤ j ≤ n− 1− i.

(2.1)

The equations for the states x0(i,j,0,n−i−j), x0(i,0,j,n−i−j) and x0(0,i,j,n−i−j) have a similar
structure with (2.1).
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Let us write the equation corresponding to the state x0(i,j,s,n−i−j−s) :

−
(
iλ1 + jλ2 + sλ3 + (n− i− j − s)λ4

)
p0(i,j,s,n−i−j−s) +

l∑
u=1

µup1(i,j,s,n−i−j−s,u) = 0,

1 ≤ i ≤ n− 3, 1 ≤ j ≤ n− 2− i, 1 ≤ s ≤ n− 1− i− j.

Let us give examples of equations corresponding to the states x1(n,0,0,0,i),
x1(0,n,0,0,i), x1(0,0,n,0,i), x1(0,0,0,n,i), x1(i,n−i,0,0,j), x1(i,0,n−i,0,j), x1(i,0,0,n−i,j),
x1(0,i,n−i,0,j), x1(0,i,0,n−i,j), x1(0,0,i,n−i,j), x1(i,j,n−i−j,0,s), x1(i,j,0,n−i−j,s), x1(i,0,j,n−i−j,s),
x1(0,i,j,n−i−j,s) and x1(i,j,s,n−i−j−s,v) :

− (nλ1 + µi)p1(n,0,0,0,i) + βi

l∑
j=1

µjp2(n,0,0,0,j) + α1βi
(
nλ1p0(n,0,0,0)

+ λ2p0(n−1,1,0,0) + λ3p0(n−1,0,1,0) + λ4p0(n−1,0,0,1)

)
= 0, 1 ≤ i ≤ l;

−
(
iλ1 + (n− i)λ2 + µj

)
p1(i,n−i,0,0,j) + βj

l∑
s=1

µsp2(i,n−i,0,0,s) + α1βj
(
iλ1p0(i,n−i,0,0)

+ (n+ 1− i)λ2p0(i−1,n+1−i,0,0) + λ3p0(i−1,n−i,1,0) + λ4p0(i−1,n−i,0,1)
)

+ α2βj
(
(i+ 1)λ1p0(i+1,n−1−i,0,0)

+ (n− i)λ2p0(i,n−i,0,0) + λ3p0(i,n−1−i,1,0) + λ4p0(i,n−1−i,0,1)
)
= 0,

1 ≤ i ≤ n− 1, 1 ≤ j ≤ l;

−
(
iλ1 + jλ2 + (n− i− j)λ3 + µs

)
p1(i,j,n−i−j,0,s) + βs

l∑
u=1

µup2(i,j,n−i−j,0,u)

+ α1βs
(
iλ1p0(i,j,n−i−j,0) + (j + 1)λ2p0(i−1,j+1,n−i−j,0)

+ (n+ 1− i− j)λ3p0(i−1,j,n+1−i−j,0) + λ4p0(i−1,j,n−i−j,1)
)

+ α2βs
(
(i+ 1)λ1p0(i+1,j−1,n−i−j,0) + jλ2p0(i,j,n−i−j,0)

+ (n+ 1− i− j)λ3p0(i,j−1,n+1−i−j,0) + λ4p0(i,j−1,n−i−j,1)
)

+ α3βs
(
(i+ 1)λ1p0(i+1,j,n−1−i−j,0) + (j + 1)λ2p0(i,j+1,n−1−i−j,0)

+ (n− i− j)λ3p0(i,j,n−i−j,0) + λ4p0(i,j,n−1−i−j,1)
)
= 0,

1 ≤ i ≤ n− 2, 1 ≤ j ≤ n− 1− i, 1 ≤ s ≤ l;
−
(
iλ1 + jλ2 + sλ3 + (n− i− j − s)λ4 + µu

)
p1(i,j,s,n−i−j−s,u)

+ βu

l∑
v=1

µvp2(i,j,s,n−i−j−s,v)

+ βuα1

(
iλ1p0(i,j,s,n−i−j−s) + (j + 1)λ2p0(i−1,j+1,s,n−i−j−s)

+ (s+ 1)λ3p0(i−1,j,s+1,n−i−j−s)(n+ 1− i− j − s)λ4p0(i−1,j,s,n+1−i−j−s)
)

+ βuα2

(
(i+ 1)λ1p0(i+1,j−1,s,n−i−j−s) + jλ2p0(i,j,s,n−i−j−s)

+ (s+ 1)λ3p0(i,j−1,s+1,n−i−j−s) + (n+ 1− i− j − s)λ4p0(i,j−1,s,n+1−i−j−s)
)

+ βuα3

(
(i+ 1)λ1p0(i+1,j,s−1,n−i−j−s) + (j + 1)λ2p0(i,j+1,s−1,n−i−j−s)
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+ sλ3p0(i,j,s,n−i−j−s) + (n+ 1− i− j − s)λ4p0(i,j,s−1,n+1−i−j−s)
)

+ βuα4

(
(i+ 1)λ1p0(i+1,j,s,n−1−i−j−s) + (j + 1)λ2p0(i,j+1,s,n−1−i−j−s)

+ (s+ 1)λ3p0(i,j,s+1,n−1−i−j−s) + (n− i− j − s)λ4p0(i,j,s,n−i−j−s)
)
= 0,

1 ≤ i ≤ n− 3, 1 ≤ j ≤ n− 2− i, 1 ≤ s ≤ n− 1− i− j, 1 ≤ u ≤ l.
The structure of equations corresponding to the states xk(n,0,0,0,i), xk(0,n,0,0,i),

xk(0,0,n,0,i), xk(0,0,0,n,i), xk(i,n−i,0,0,j), xk(i,0,n−i,0,j), xk(i,0,0,n−i,j), xk(0,i,n−i,0,j),
xk(0,i,0,n−i,j), xk(0,0,i,n−i,j), xk(i,j,n−i−j,0,s), xk(i,j,0,n−i−j,s), xk(i,0,j,n−i−j,s),
xk(0,i,j,n−i−j,s) and xk(i,j,s,n−i−j−s,v) for k ∈ {2, 3, . . . ,m−1} differs from the structure of
equations (2.2) only in the absence of the multiplier βi before the probabilities pk−1(.,.,.,.,i) :

− (nλ1 + µi)pk(n,0,0,0,i) + βi

l∑
j=1

µjpk+1(n,0,0,0,j) + α1

(
nλ1pk−1(n,0,0,0,i)

+ λ2pk−1(n−1,1,0,0,i) + λ3pk−1(n−1,0,1,0,i) + λ4pk−1(n−1,0,0,1,i)

)
= 0,

2 ≤ k ≤ m− 1, 1 ≤ i ≤ l;

−
(
iλ1 + (n− i)λ2 + µj

)
pk(i,n−i,0,0,j) + βj

l∑
s=1

µspk+1(i,n−i,0,0,s)

+ α1

(
iλ1pk−1(i,n−i,0,0,j) + (n+ 1− i)λ2pk−1(i−1,n+1−i,0,0,j) + λ3pk−1(i−1,n−i,1,0,j)

+ λ4pk−1(i−1,n−i,0,1,j)
)

+ α2

(
(i+ 1)λ1pk−1(i+1,n−1−i,0,0,j) + (n− i)λ2pk−1(i,n−i,0,0,j) + λ3pk−1(i,n−1−i,1,0,j)

+ λ4pk−1(i,n−1−i,0,1,j)
)
= 0, 2 ≤ k ≤ m− 1, 1 ≤ i ≤ n− 1, 1 ≤ j ≤ l; . . . .

Let us give examples of equations corresponding to the states xk(r−k,0,0,0,i),
xk(0,r−k,0,0,i), xk(0,0,r−k,0,i), xk(0,0,0,r−k,i), xk(i,r−k−i,0,0,j), xk(i,0,r−k−i,0,j),
xk(i,0,0,r−k−i,j), xk(0,i,r−k−i,0,j), xk(0,i,0,r−k−i,j), xk(0,0,i,r−k−i,j), xk(i,j,r−k−i−j,0,s),
xk(i,j,0,r−k−i−j,s), xk(i,0,j,r−k−i−j,s), xk(0,i,j,r−k−i−j,s) and xk(i,j,s,r−k−i−j−s,v) for
k ∈ {m+ 1,m+ 2, . . . , r − 1}

−
(
(r − k)λ1 + µi

)
pk(r−k,0,0,0,i) + α1βi

l∑
j=1

µjpk+1(r−k−1,0,0,0,j)

+ (r − k + 1)λ1pk−1(r−k+1,0,0,0,i) + λ2pk−1(r−k,1,0,0,i) + λ3pk−1(r−k,0,1,0,i)

+ λ4pk−1(r−k,0,0,1,i) = 0, m+ 1 ≤ k ≤ r − 1, 1 ≤ i ≤ l;

−
(
iλ1 + (r − k − i)λ2 + µj

)
pk(i,r−k−i,0,0,j) + βj

l∑
s=1

µs
(
α1pk+1(i−1,r−k−i,0,0,s)

+ α2pk+1(i,r−k−i−1,0,0,s)

)
+ (i+ 1)λ1pk−1(i+1,r−k−i,0,0,j)

+ (r − k − i+ 1)λ2pk−1(i,r−k−i+1,0,0,j) + λ3pk−1(i,r−k−i,1,0,j)

+ λ4pk−1(i,r−k−i,0,1,j) = 0, m+ 1 ≤ k ≤ r − 2, 1 ≤ i ≤ r − k − 1, 1 ≤ j ≤ l;
−
(
iλ1 + jλ2 + (r − k − i− j)λ3 + µs

)
pk(i,j,r−k−i−j,0,s)

+ βs

l∑
u=1

µu
(
α1pk+1(i−1,j,r−k−i−j,0,u) + α2pk+1(i,j−1,r−k−i−j,0,u)

+ α3pk+1(i,j,r−k−i−j−1,0,u)

)
+ (i+ 1)λ1pk−1(i+1,j,r−k−i−j,0,s)
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+ (j + 1)λ2pk−1(i,j+1,r−k−i−j,0,s) + (r − k − i− j + 1)λ3pk−1(i,j,r−k−i−j+1,0,s)

+ λ4pk−1(i,j,r−k−i−j,1,s) = 0,

m+ 1 ≤ k ≤ r − 3, 1 ≤ i ≤ r − k − 2, 1 ≤ j ≤ r − k − i− 1, 1 ≤ s ≤ l;
−
(
iλ1 + jλ2 + sλ3 + (r − k − i− j − s)λ4 + µu

)
pk(i,j,s,r−k−i−j−s,u)

+ βu

l∑
v=1

µv
(
α1pk+1(i−1,j,s,r−k−i−j−s,v) + α2pk+1(i,j−1,s,r−k−i−j−s,v)

+ α3pk+1(i,j,s−1,r−k−i−j−s,v) + α4pk+1(i,j,s,r−k−i−j−s−1,v)

)
+ (i+ 1)λ1pk−1(i+1,j,s,r−k−i−j−s,u) + (j + 1)λ2pk−1(i,j+1,s,r−k−i−j−s,u)

+ (s+ 1)λ3pk−1(i,j,s+1,r−k−i−j−s,u)

+ (r − k − i− j − s+ 1)λ4pk−1(i,j,s,r−k−i−j−s+1,u) = 0,

m+ 1 ≤ k ≤ r − 4, 1 ≤ i ≤ r − k − 3, 1 ≤ j ≤ r − k − i− 2,

1 ≤ s ≤ r − k − i− j − 1, 1 ≤ u ≤ l.

Let us write the equation corresponding to the state xr(0,0,0,0,i) :

−µipr(0,0,0,0,i) + λ1pr−1(1,0,0,0,i) + λ2pr−1(0,1,0,0,i) + λ3pr−1(0,0,1,0,i)

+λ4pr−1(0,0,0,1,i) = 0, 1 ≤ i ≤ l.

The normalization condition closes the system of equations for steady-state probabilities:

n∑
i=0

n−i∑
j=0

n−i−j∑
s=0

p0(i,j,s,n−i−j−s) +

m∑
k=1

n∑
i=0

n−i∑
j=0

n−i−j∑
s=0

l∑
u=1

pk(i,j,s,n−i−j−s,u)

+

r∑
k=m+1

r−k∑
i=0

r−k−i∑
j=0

r−k−i−j∑
s=0

l∑
u=1

pk(i,j,s,r−k−i−j−s,u) = 1.

Solving the system obtained by the method of fictitious phases, we find the steady-state
probabilities pk of having k failed units, using the formulas

p0 =
n∑
i=0

n−i∑
j=0

n−i−j∑
s=0

p0(i,j,s,n−i−j−s),

pk =
n∑
i=0

n−i∑
j=0

n−i−j∑
s=0

l∑
u=1

pk(i,j,s,n−i−j−s,u), 1 ≤ k ≤ m;

pk =
r−k∑
i=0

r−k−i∑
j=0

r−k−i−j∑
s=0

l∑
u=1

pk(i,j,s,r−k−i−j−s,u), m+ 1 ≤ k ≤ r.

3 Numerical results

Let Γ (V ), W (V ) and U [a, b] denote the gamma distribution, Weibull distribution with
coefficients of variation V, and uniform distribution on the interval [a, b], respectively.
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Table 1 List of distributions D1 and D2 for which condition ∆(6,5) < 10−4 holds

D1 D2 Values of V2 D1 D2 Values of V1

Γ (0.001) Γ (V2) [0.7, 1.5] Γ (V1) Γ (0.001) 0.4, 0.51, [0.7, 100]
Γ (0.001) W (V2) [0.8, 1.2] W (V1) Γ (0.001) [0.4, 10]
Γ (0.4) Γ (V2) [0.001, 0.3], [0.51, 1.6] Γ (V1) Γ (0.4) 0.3, [0.8, 100]
Γ (0.4) W (V2) [0.001, 1.3] W (V1) Γ (0.4) [0.3, 10]
W (0.4) Γ (V2) [0.001, 1.6] W (V1) W (0.4) [0.3, 10]
W (0.4) W (V2) [0.001, 1.3] Γ (V1) W (0.4) [0.3, 100]
U [0, 8] Γ (V2) [0.001, 1.4] Γ (V1) U [0, 2] [0.3, 100]
U [0, 8] W (V2) [0.001, 1.3] W (V1) U [0, 2] [0.3, 10]
Γ (0.8) Γ (V2) [0.001, 1.8] Γ (V1) Γ (0.8) [0.001, 100]
Γ (0.8) W (V2) [0.001, 1.4] W (V1) Γ (0.8) [0.001, 10]
W (0.8) Γ (V2) [0.001, 1.8] Γ (V1) W (0.8) [0.001, 100]
W (0.8) W (V2) [0.001, 1.4] W (V1) W (0.8) [0.001, 10]
Γ (1.3) Γ (V2) [0.001, 1.6] Γ (V1) Γ (1.3) [0.001, 100]
Γ (1.3) W (V2) [0.001, 1.4] W (V1) Γ (1.3) [0.001, 10]
W (1.3) Γ (V2) [0.001, 1.7] Γ (V1) W (1.3) [0.4, 100]
W (1.3) W (V2) [0.001, 1.4] W (V1) W (1.3) [0.4, 10]
Γ (100) Γ (V2) [0.001, 1.5] Γ (V1) Γ (2) –
Γ (100) W (V2) [0.001, 1.3] W (V1) Γ (2) –
W (10) Γ (V2) [0.001, 1.8] Γ (V1) W (2) –
W (10) W (V2) [0.001, 1.4] W (V1) W (2) –

In this section we present the results of using the H4/H5/1/r and H4/H6/1/r systems
to calculate the probabilities pk for the G/G/1/r series recoverable system with redun-
dancy. We consider the gamma distributions, Weibull distributions and uniform distribu-
tions of units’ time to failure (named distribution D1) and units’ recovery time (named
distribution D2).

For theM/G/1/r queueing systems the deviation∆sim =
r∑

k=0

|pk−pk(sim)| of distribu-

tion {pk(sim)}, obtained using the GPSS World simulation system [8], from the distribution
{pk}, obtained using the method of potentials, exceeds 10−4 [7]. This statement is con-
firmed if we calculate ∆sim for the considered series system with exponential distributions
of the units’ time to failure and recovery time. The GPSS World simulation model of the
series recoverable system with redundancy is constructed in [9].

We determine the values of the variation coefficients of the Γ (V ) and W (V ) distri-
butions, for which the condition ∆(6,5) < 10−4 holds. If this condition is fulfilled, the
distribution {pk(6)} is a more accurate approximation to the true steady-state distribu-
tion {pk}, than the distribution obtained using the GPSS World simulation system. Here

∆(6,5) =
r∑

k=0

|pk(6) − pk(5)| gives an opportunity to estimate the deviation of distributions

{pk(6)} from distributions {pk(5)}, where pk(l) are values of probabilities pk obtained using
the H4/Hl/1/r system as an approximation of the G/G/1/r system.

Let us take n = 4, m = 3, T = 4 and τ = 1, where τ is the mean units’ recovery time.
Thus, the average values of the distributions D1 and D2 are equal to 4 and 1 respectively.

The numerical results are presented in Table 1. Of all the intervals corresponding to the
Γ (V ) distributions, the values V = 0.5 and V = 1/

√
2 of the variation coefficient should

be excluded, since for the Γ (0.5) distribution it is not possible to construct approximations
with the help of hyperexponential distributions of order higher than the third, and hyperex-
ponential approximations do not exist for the Γ (1/

√
2) distribution.

The data in Table 1 show that a high accuracy of approximation is achieved for a wider
range of values of the variation coefficient of the distribution D1 compared to the distribu-
tion D2. Namely, for the distribution D1, the maximum interval for the variation coefficient
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Table 2 Results of the calculation of steady-state reliability indices for different distributions D1 and D2

D1 D2 N K W ∆(6,5)

Γ (0.001) W (0.6) 2.419 0.798 1.583 2.30 · 10−6

Γ (0.001) Γ (0.7) 2.436 0.776 1.641 3.56 · 10−8

Γ (0.001) W (0.8) 2.484 0.748 1.737 2.70 · 10−6

Γ (0.001) Γ (1.3) 2.654 0.670 2.169 3.67 · 10−5

Γ (0.001) Γ (1.5) 2.720 0.649 2.347 8.90 · 10−5

W (0.4) Γ (0.001) 2.305 0.868 1.396 2.41 · 10−6

W (0.5) Γ (0.001) 2.347 0.834 1.472 3.54 · 10−7

Γ (0.7) Γ (0.001) 2.425 0.778 1.617 2.86 · 10−6

Γ (0.8) Γ (0.001) 2.461 0.753 1.690 4.69 · 10−7

Γ (1.5) Γ (0.001) 2.696 0.628 2.177 9.18 · 10−6

W (10) Γ (0.001) 2.659 0.645 2.100 3.88 · 10−8

Γ (100) Γ (0.001) 3.284 0.363 3.599 9.28 · 10−6

Γ (0.4) Γ (0.1) 2.321 0.864 1.415 2.26 · 10−6

Γ (0.4) Γ (0.3) 2.356 0.834 1.480 6.06 · 10−7

Γ (0.4) W (0.4) 2.391 0.811 1.542 8.54 · 10−7

Γ (0.4) W (1.3) 2.652 0.667 2.177 7.70 · 10−5

Γ (0.4) Γ (1.6) 2.755 0.634 2.450 7.10 · 10−5

Γ (0.3) Γ (0.4) 2.359 0.833 1.484 2.30 · 10−5

W (0.3) Γ (0.4) 2.356 0.833 1.482 2.13 · 10−6

Γ (0.8) Γ (0.4) 2.498 0.731 1.770 4.40 · 10−7

W (10) Γ (0.4) 2.672 0.640 2.140 8.02 · 10−7

Γ (100) Γ (0.4) 3.281 0.364 3.595 4.06 · 10−5

W (0.4) W (0.1) 2.312 0.864 1.407 2.12 · 10−6

W (0.4) Γ (0.49) 2.408 0.792 1.586 4.02 · 10−5

W (0.4) W (1.3) 2.655 0.665 2.181 7.12 · 10−5

W (0.4) Γ (1.6) 2.757 0.632 2.454 6.88 · 10−5

Γ (0.3) W (0.4) 2.371 0.831 1.497 3.18 · 10−6

W (0.3) W (0.4) 2.368 0.831 1.495 2.85 · 10−6

Γ (0.6) W (0.4) 2.442 0.769 1.650 3.28 · 10−6

W (10) W (0.4) 2.674 0.639 2.142 3.69 · 10−8

Γ (100) W (0.4) 3.281 0.364 3.595 3.11 · 10−6

U [0, 8] W (0.1) 2.376 0.801 1.542 1.08 · 10−6

U [0, 8] U [0, 2] 2.511 0.731 1.782 6.37 · 10−6

U [0, 8] W (0.9) 2.588 0.687 1.978 1.64 · 10−7

U [0, 8] Γ (1.4) 2.729 0.633 2.350 1.19 · 10−5

Γ (0.3) U [0, 2] 2.463 0.775 1.655 2.83 · 10−5

W (0.4) U [0, 2] 2.474 0.763 1.688 7.91 · 10−6

W (10) U [0, 2] 2.697 0.631 2.199 5.50 · 10−7

Γ (100) U [0, 2] 3.273 0.366 3.584 2.97 · 10−5

Γ (0.8) W (1.3) 2.702 0.640 2.287 3.23 · 10−5

Γ (0.8) Γ (1.4) 2.740 0.628 2.381 9.93 · 10−6

Γ (0.8) W (1.4) 2.722 0.634 2.347 9.67 · 10−5

Γ (0.8) Γ (1.8) 2.834 0.602 2.666 7.99 · 10−5

Γ (0.6) Γ (0.8) 2.543 0.709 1.880 1.11 · 10−6

Γ (1.5) Γ (0.8) 2.757 0.603 2.344 2.27 · 10−7

W (10) Γ (0.8) 2.714 0.625 2.259 3.72 · 10−7

Γ (100) Γ (0.8) 3.271 0.367 3.582 3.80 · 10−7

W (0.8) W (1.4) 2.726 0.632 2.355 9.58 · 10−5

W (0.8) Γ (1.8) 2.837 0.600 2.671 7.56 · 10−5

Γ (0.6) W (0.8) 2.549 0.706 1.888 3.59 · 10−6

W (10) W (0.8) 2.716 0.624 2.263 3.66 · 10−8

Γ (100) W (0.8) 3.270 0.367 3.580 1.33 · 10−6

Γ (2) Γ (0.49) 2.843 0.562 2.512 4.45 · 10−8

Γ (2) Γ (1.5) 2.935 0.532 2.824 8.36 · 10−5

W (2) Γ (0.49) 2.769 0.600 2.346 4.78 · 10−8

W (2) Γ (1.5) 2.880 0.562 2.706 3.27 · 10−5

is [0.001, 100] for the gamma distributions, and it is [0.001, 10] for the Weibull distributions.
For the distributionD2, the maximum interval for the variation coefficient is [0.001, 1.8] for
the gamma distributions, and it is [0.001, 1.4] for the Weibull distributions.
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The results of calculation of reliability steady-state indices for different distributions D1

and D2 are given in Table 2. The presented results show that an increase in the variation
coefficient of distributions D1 and D2 leads to an increase in the average number of failed
units N and the mean waiting time for recovering W and to a decrease in the stationary
availability coefficient of the system K.

4 Conclusions

This paper shows that the application of hyperexponential approximations of distributions
of the units’ time to failure and recovery time allow us to calculate steady-state probabilities
of the series recoverable system with redundancy and one repair facility. We find these prob-
abilities using solutions of a system of linear algebraic equations obtained by the method
of fictitious phases. To obtain parameters of Hl-approximation of a certain distribution, it is
necessary to solve the system of equations of the moments method. Computing the devia-
tions ∆(6,5) allows us to track the accuracy of approaching distributions {pk(l)} to the true
distribution {pk} without the need of using simulation models. We defined conditions for
the variation coefficients of the gamma distributions and Weibull distributions, for which
the best accuracy of calculating the steady-state probabilities is achieved compared with the
case of using simulation models.
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