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CALCULATING STEADY-STATE PROBABILITIES OF CLOSED
QUEUEING SYSTEMS USING HYPEREXPONENTIAL

APPROXIMATION

SOLTAN A. ALIYEV, YAROSLAV I. YELEYKO, AND YURIY V. ZHERNOVYI

Abstract. In this paper we propose a method for calculating steady-
state probability distributions of the closed queueing systems with expo-
nential distribution of customer generation time and arbitrary distribu-
tion of service times. The approach based on the use of fictitious phases
and hyperexponential approximations with parameters of the paradox-
ical and complex type by method of moments. We consider queueing
systems with the number of channels n = 1, 2 and 3. The obtained
numerical results are verified using simulation models.

1. Introduction

The purpose of this work is the analysis of a model of a closed queueing system
that is employed, in particular, in the theory of communication networks and
integral queueing networks [1, 3–5]. A closed system is also known as a system
with a finite number of sources or the Engset system.

We assume that customers from m identical sources are fed to a queueing
system. Each source can generate only one customer, and the next customer is
not sent if the previous customer is not processed. Time interval from the moment
at which the customer is returned to the source to the moment of the arrival of
this customer to the system is the customer generation time. We assume that
the customer generation time is distributed in accordance with the exponential
law with parameter λ. Intensity of the input flow of customers of a closed system
depends on the number of customers in the system ξ(t) at moment t and is
represented as λ(m − ξ(t)). Such a flow is classified as the Poisson flow of the
second kind (see [2]).

The method of potentials was used in [8] to construct an algorithm that makes
it possible to determine the steady-state distribution of the number of customers
for a single-channel closed system with an arbitrary distribution of service times.
This method is not suitable for multichannel queueing systems.

Article [6] shows that the use of hyperexponential approximation (Hr) makes
it possible to determine with high accuracy the steady-state probabilities of non-
Markovian single-channel queuing systems. These probabilities are determined
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using solutions of a system of linear algebraic equations obtained by the method
of fictitious phases. To find parameters of the Hr-approximation of a certain
distribution it is sufficient to solve the system of equations of the moments
method. For the values V < 1 of the variation coefficient, roots of this sys-
tem are complex-valued or paradoxical (i.e., negative or with probabilities that
exceed the boundaries of the interval [0, 1] ) but in most cases as a result of
summation of probabilities of microstates, their complex-valued and paradoxical
parts are annihilated.

The purpose of the paper is to use of the hyperexponential approximation
method for calculating steady-state probabilities of the closed queueing systems
with exponential distribution of customer generation time and arbitrary distribu-
tion of service times. We consider queueing systems with the number of channels
n = 1, 2 and 3. The obtained numerical results are verified using simulation mod-
els. The results for a single-channel system can be checked using the method of
potentials. We also indicate ways to evaluate the accuracy of approach the ob-
tained steady-state distribution to the true distribution without the need to use
simulation models.

2. Equations for steady-state probabilities of the single-channel
closed system with Hr -distribution of service times

The hyperexponential distribution of order r is a phase-type distribution and
provides for choosing one of r alternative phases by a random process. With
probability βi, the process is at the ith phase and is in it during an exponentially
distributed time with a parameter µi.

Let us suppose that the customer generation time is exponentially distributed
with a parameter λ, and the service times of each customer are independent
random variables distributed according to the hyperexponential law Hr (r ≥ 2)
with probabilities βi and parameters µi (1 ≤ i ≤ r).

Let us enumerate the single-channel system’s states as follows: x0 corresponds
to the empty system; xk(i) is the state, when there are k customers in the system
(1 ≤ k ≤ m), the service time is in the phase i (1 ≤ i ≤ r). We denote by p0

and pk(i) respectively, steady-state probabilities that the system is in the each of
these states. To calculate p0 and pk(i) we obtain the system of linear equations:

−mλp0 +
r∑

i=1

µip1(i) = 0;

− ((m− 1)λ + µi) p1(i) + mλβip0 + βi

r∑

j=1

µjp2(j) = 0, 1 ≤ i ≤ r;

− ((m− k)λ + µi) pk(i) + (m− k + 1)λpk−1(i) + βi

r∑

u=1

µupk+1(u) = 0,

2 ≤ k ≤ m− 1, 1 ≤ i ≤ r;

− µipm(i) + λpm−1(i) = 0, 1 ≤ i ≤ r; p0 +
m∑

k=1

r∑

i=1

pk(i) = 1.

(2.1)
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Solving the system (2.1), we find the steady-state probabilities pk of the pres-
ence in the queueing system of k customers using the formulas

pk =
r∑

i=1

pk(i), 1 ≤ k ≤ m. (2.2)

3. Equations for steady-state probabilities of the double-channel
closed system with Hr -distribution of service times

Let us enumerate the double-channel system’s states as follows: x0 corresponds
to the empty system; xk(ij) is the state, when there are k customers in the system
(1 ≤ k ≤ m), the service time is in the phase i (1 ≤ i ≤ r), and in the phase j
(i ≤ j ≤ r) for each of the two channels respectively. For the case when k = 1,
we assume that j = 0. We denote by p0 and pk(ij) respectively, steady-state
probabilities that the system is in the each of these states. To calculate p0 and
pk(ij) we obtain the system of linear equations:

−mλp0 +
r∑

u=1

µup1(u0) = 0;

− ((m− 1)λ + µi) p1(i0) + mλβip0 + 2µip2(ii) +
i−1∑

u=1

µup2(ui)+

+
r∑

u=i+1

µup2(iu) = 0, 1 ≤ i ≤ r;

− ((m− 2)λ + 2µi) p2(ii) + (m− 1)λβip1(i0) + 2µiβip3(ii)+

+ βi

(
i−1∑

u=1

µup3(ui) +
r∑

u=i+1

µup3(iu)

)
= 0, 1 ≤ i ≤ r;

− ((m− 2)λ + µi + µj) p2(ij) + (m− 1)λβjp1(i0) + (m− 1)λβip1(j0)+

+ βj

(
2µip3(ii) +

i−1∑

u=1

µup3(ui) +
r∑

u=i+1

µup3(iu)

)
+

+ βi


2µjp3(jj) +

j−1∑

u=1

µup3(uj) +
r∑

u=j+1

µup3(ju)


 = 0,

1 ≤ i ≤ r − 1, i + 1 ≤ j ≤ r;

− ((m− k)λ + 2µi) pk(ii) + (m− k + 1)λpk−1(ii) + 2µiβipk+1(ii)+

+ βi

(
i−1∑

u=1

µupk+1(ui) +
r∑

u=i+1

µupk+1(iu)

)
= 0, 3 ≤ k ≤ m− 1, 1 ≤ i ≤ r;

− ((m− k)λ + µi + µj) pk(ij) + (m− k + 1)λpk−1(ij)+

+ βj

(
2µipk+1(ii) +

i−1∑

u=1

µupk+1(ui) +
r∑

u=i+1

µupk+1(iu)

)
+
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+ βi


2µjpk+1(jj) +

j−1∑

u=1

µupk+1(uj) +
r∑

u=j+1

µupk+1(ju)


 = 0,

3 ≤ k ≤ m− 1, 1 ≤ i ≤ r − 1, i + 1 ≤ j ≤ r;
− 2µipm(ii) + λpm−1(ii) = 0, 1 ≤ i ≤ r;

− (µi + µj)pm(ij) + λpm−1(ij) = 0, 1 ≤ i ≤ r − 1, i + 1 ≤ j ≤ r;

p0 +
r∑

i=1

p1(i0) +
m∑

k=2

r∑

i=1

r∑

j=i

pk(ij) = 1.

(3.1)

Solving the system (3.1), we find the steady-state probabilities pk of the pres-
ence in the queueing system of k customers using the formulas

p1 =
r∑

i=1

p1(i0); pk =
r∑

i=1

r∑

j=i

pk(ij), 2 ≤ k ≤ m.

4. Equations for steady-state probabilities of the three-channel
closed system with Hr -distribution of service times

Let us enumerate the three-channel system’s states as follows: x0 corresponds
to the empty system; xk(ijs) is the state, when there are k customers in the
system (1 ≤ k ≤ m), the service time is in the phase i (1 ≤ i ≤ r), in the phase
j (i ≤ j ≤ r) and in the phase s (j ≤ s ≤ r) for each of the three channels
respectively. In the case when k = 1, we assume that j = s = 0, and for k = 2,
we take s = 0. We denote by p0 and pk(ijs) respectively, steady-state probabilities
that the system is in the each of these states. To calculate p0 and pk(ijs) we
obtain the system of linear equations:

−mλp0 +
r∑

i=1

µip1(i00) = 0;

− ((m− 1)λ + µi) p1(i00) + mλβip0 + 2µip2(ii0) +
i−1∑

u=1

µup2(ui0)+

+
r∑

j=i+1

µjp2(ij0) = 0, 1 ≤ i ≤ r;

− ((m− 2)λ + 2µi) p2(ii0) + (m− 1)λβip1(i00) + 3µip3(iii)+

+
i−1∑

s=1

µsp3(iis) +
r∑

s=i+1

µsp3(iis) = 0, 1 ≤ i ≤ r;

− ((m− 2)λ + µi + µj) p2(ij0) + (m− 1)λβjp1(i00) + (m− 1)λβip1(j00)+

+ 2µip3(iij) +
i−1∑

u=1

µup3(uij) +
j−1∑

u=i+1

µup3(iuj)+

+ 2µjp3(jji) +
r∑

u=j+1

µup3(iju) = 0, 1 ≤ i ≤ r − 1, i + 1 ≤ j ≤ r;
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− ((m− 3)λ + 3µi) p3(iii) + (m− 2)λβip2(ii0) + 3βiµip4(iii)+

+ βi

(
i−1∑

s=1

µsp4(iis) +
r∑

s=i+1

µsp4(iis)

)
= 0, 1 ≤ i ≤ r;

− ((m− 3)λ + 2µi + µs) p3(iis) + (m− 2)λβip2(is0) + (m− 2)λβsp2(ii0)+

+ βs

(
3µip4(iii) +

i−1∑

u=1

µup4(iiu) +
r∑

u=i+1

µup4(iiu)

)
+ βi

r∑

u=s+1

µup4(isu)+

+ βi

(
2µip4(iis) + 2µsp4(ssi) +

i−1∑

u=1

µup4(uis) +
s−1∑

u=i+1

µup4(ius)

)
= 0,

1 ≤ i ≤ r − 1, i + 1 ≤ s ≤ r;

− ((m− 3)λ + 2µi + µs) p3(iis) + (m− 2)λβip2(si0) + (m− 2)λβsp2(ii0)+

+ βs

(
3µip4(iii) +

i−1∑

u=1

µup4(iiu) +
r∑

u=i+1

µup4(iiu)

)
+ βi

r∑

u=i+1

µup4(siu)+

+ βi

(
2µip4(iis) + 2µsp4(ssi) +

s−1∑

u=1

µup4(usi) +
i−1∑

u=s+1

µup4(sui)

)
= 0,

2 ≤ i ≤ r, 1 ≤ s ≤ i− 1;

− ((m− 3)λ + µi + µj + µs) p3(ijs) + (m− 2)λβip2(js0) + (m− 2)λβjp2(is0)+

+ (m− 2)λβsp2(ij0) + βi




j−1∑

u=1

µup4(ujs) +
s−1∑

u=j+1

µup4(jus) +
r∑

u=s+1

µup4(jsu)


+

+ βj

(
i−1∑

u=1

µup4(uis) +
s−1∑

u=i+1

µup4(ius) +
r∑

u=s+1

µup4(isu)

)
+

+ βs




i−1∑

u=1

µup4(uij) +
j−1∑

u=i+1

µup4(iuj) +
r∑

u=j+1

µup4(iju)


+

+ 2βi

(
µjp4(jjs) + µsp4(ssj)

)
+ 2βj

(
µip4(iis) + µsp4(ssi)

)
+

+ 2βs

(
µip4(iij) + µjp4(jji)

)
= 0,

1 ≤ i ≤ r − 2, i + 1 ≤ j ≤ r − 1, j + 1 ≤ s ≤ r;

− ((m− k)λ + 3µi) pk(iii) + (m− k + 1)λpk−1(iii) + 3βiµipk+1(iii)+

+ βi

(
i−1∑

u=1

µupk+1(iiu) +
r∑

u=i+1

µupk+1(iiu)

)
= 0, 4 ≤ k ≤ m− 1, 1 ≤ i ≤ r;

− ((m− k)λ + 2µi + µs) pk(iis) + (m− k + 1)λpk−1(iis)+

+ 3µiβspk+1(iii) + 2µiβipk+1(iis) + 2µsβipk+1(ssi) + βs

i−1∑

u=1

µupk+1(iiu)+

+ βs

r∑

u=i+1

µupk+1(iiu) + βi

i−1∑

u=1

µupk+1(uis)+

+ βi

(
s−1∑

u=i+1

µupk+1(ius) +
r∑

u=s+1

µupk+1(isu)

)
= 0,

4 ≤ k ≤ m− 1, 1 ≤ i ≤ r − 1, i + 1 ≤ s ≤ r;
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− ((m− k)λ + 2µi + µs))pk(iis) + (m− k + 1)λpk−1(iis)+

+ 3µiβspk+1(iii) + 2µiβipk+1(iis) + 2µsβipk+1(ssi) + βs

i−1∑

u=1

µupk+1(iiu)+

+ βs

r∑

u=i+1

µupk+1(iiu) + βi

r∑

u=i+1

µupk+1(siu)+

+ βi

(
s−1∑

u=1

µupk+1(usi) +
i−1∑

u=s+1

µupk+1(sui)

)
= 0,

4 ≤ k ≤ m− 1, 2 ≤ i ≤ r, 1 ≤ s ≤ i− 1;

− ((m− k)λ + µi + µj + µs) pk(ijs) + (m− k + 1)λpk−1(ijs)+

+ βi




j−1∑

u=1

µupk+1(ujs) +
s−1∑

u=j+1

µupk+1(jus) +
r∑

u=s+1

µupk+1(jsu)


+

+ βj

(
i−1∑

u=1

µupk+1(uis) +
s−1∑

u=i+1

µupk+1(ius) +
r∑

u=s+1

µupk+1(isu)

)
+

+ βs




i−1∑

u=1

µupk+1(uij) +
j−1∑

u=i+1

µupk+1(iuj) +
r∑

u=j+1

µupk+1(iju)


+

+ 2βi

(
µjpk+1(jjs) + µspk+1(ssj)

)
+ 2βj

(
µipk+1(iis) + µspk+1(ssi)

)
+

+ 2βs

(
µipk+1(iij) + µjpk+1(jji)

)
= 0,

4 ≤ k ≤ m− 1, 1 ≤ i ≤ r − 2, i + 1 ≤ j ≤ r − 1, j + 1 ≤ s ≤ r;
− 3µipm(iii) + λpm−1(iii) = 0, 1 ≤ i ≤ r;

− (2µi + µs)pm(iis) + λpm−1(iis) = 0, 1 ≤ i ≤ r, 1 ≤ s ≤ r, s 6= i;

− (µi + µj + µs)pm(ijs) + λpm−1(ijs) = 0,

1 ≤ i ≤ r − 2, i + 1 ≤ j ≤ r − 1, j + 1 ≤ s ≤ r;

p0 +
r∑

i=1

p1(i00) +
r∑

i=1

r∑

j=i

p2(ij0) +
m∑

k=3

r∑

i=1

r∑

s=1

pk(iis)+

+
m∑

k=3

r−2∑

i=1

r−1∑

j=i+1

r∑

s=j+1

pk(ijs) = 1.

(4.1)

Solving the system (4.1), we find the steady-state probabilities pk of the pres-
ence in the queueing system of k customers using the formulas

p1 =
r∑

i=1

p1(i00), p2 =
r∑

i=1

r∑

j=i

p2(ij0);

pk =
r∑

i=1

r∑

s=1

pk(iis) +
r−2∑

i=1

r−1∑

j=i+1

r∑

s=j+1

pk(ijs), 3 ≤ k ≤ m.
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5. Features of finding probabilities pk in the case of
complex-valued or paradoxical parameters of

Hr-approximation

We calculate the approximate steady-state probabilities pk for n-channel closed
systems with n = 1, n = 2 and n = 3, and arbitrary distribution of service times
using solutions of equations (2.1), (3.1) and (4.1) respectively, written for the
closed systems with Hr-distribution of service times, considering the order of
approximation r from 2 to 6.

The system of equations of the moments method for approximating the dis-
tribution of some random variable X using a random variable Yr, distributed by
law of Hr, is of the form

r∑

s=1

βs

µi
s

=
mi

i!
, 0 ≤ i ≤ 2r − 1;

r∑

s=1

βs = 1, (5.1)

where mi = E(Xi) is the initial moment of order i of the random variable X. The
dependence of the nature of the roots of system (5.1) on values of the variation
coefficient V for the original gamma distributions and Weibull distributions is
described in [6]. For the values V < 1 of the variation coefficient, some of
the roots of system (5.1) are complex-valued but in most cases as a result of
summation of probabilities of microstates the steady-state probabilities pk are
real-valued.

To illustrate this fact, we consider the solutions of system (2.1) for complex-
valued parameters βs and µs, limited to the case when r = 2 and m = 2. In this
case, using the solutions of system (2.1) and formula (2.2), we obtain

p0 =
µ1µ2

∆
(
λ(β1µ1 + β2µ2) + µ1µ2

)
,

p1 =
2λµ1µ2

∆
(λ + β2µ1 + β1µ2), p2 = 1− p0 − p1,

∆ = −2λ3(β2µ1 + β1µ2) + 2λ2(β2µ
2
1 + β1µ

2
2 + µ1µ2)+

+ λµ1µ2

(
(β1 + 2β2)µ1 + (β2 + 2β1)µ2

)
+ µ2

1µ
2
2.

(5.2)

If parameters βs and µs (s = 1, 2) are complex-valued, then they can only
be complex conjugate, and all possible cases of alternation of signs before the
imaginary unit can be reduced to such two:

1) β1 = a + ib, µ1 = c + id; β2 = a− ib, µ2 = c− id;

2) β1 = a + ib, µ1 = c− id; β2 = a− ib, µ2 = c + id.
(5.3)

In each of these cases, the imaginary parts in expressions (5.2) for pk (k = 0, 1, 2)
are reduced, because the expressions

µ1µ2, β1µ2 + β2µ1, β1µ1 + β2µ2, β1µ
2
2 + β2µ

2
1

of which consist pk, are real-valued.
In the case of complex-valued or paradoxical roots βs and µs of system (5.1), let

us name the function FHr(t) = 1 −
r∑

s=1
βse

−µst ( t ≥ 0) the distribution pseudo-

function by law of Hr. Let us show that the function FHr(t) is a real-valued
function if βs and µs (1 ≤ s ≤ r) are roots of system (5.1).
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In fact, if some of the roots of system (5.1) are complex-valued, then they can
only be complex conjugate, and all possible cases of alternation of signs before
the imaginary unit can be reduced to two cases presented in (5.3). In each of
these cases, the imaginary parts in the expression for FHr(t) are reduced, so the
result is the real-valued function:

1) β1e
−µ1t + β2e

−µ2t = 2 e−ct (a · cos(dt) + b · sin(dt)) ;

2) β1e
−µ1t + β2e

−µ2t = 2 e−ct (a · cos(dt)− b · sin(dt)) .

The absolute deviation of the function of distribution by law G from a function
FHr(t) which parameters are roots of system (5.1), we will evaluate with the help
of integral

∆l(F ) =

∞∫

0

|FHr(t)− FG(t)|dt,

where FG(t) is the probability distribution function by law G.
Let Γ(V ), W (V ) and U [a, b] denote the gamma distribution, Weibull distri-

bution with coefficients of variation V, and uniform distribution on the interval
[a, b], respectively.

In Table 1, we give values of deviation ∆r(F ) for r = 2, . . . , 6, calculated
by results of approximation of different distributions with means 0.5. With in-
creasing order of Hr-distribution, the value of deviation ∆r(F ) decreases, and
with the increase of the variation coefficient for V > 1, the deviation increases,
much faster for the Weibull distribution compared with the gamma distribu-
tion. The deviations ∆r(F ) have the smallest values for the distribution Γ(0.7).
For the distributions W (0.7), W (0.8), W (0.9) and W (0.95) for some values of
r, the deviation ∆r(F ) = ∞. In each of these cases, one of roots µs of system
(5.1) is real, but negative. Therefore, for the corresponding distribution pseudo-
function, the limit relation lim

t→∞FHr(t) = ∞ is valid. For these values of r, the

steady-state probabilities pk, obtained using solutions of equations (2.1), (3.1)
and (4.1), written for the closed systems with Hr-distribution of service times,
can be paradoxical or more differ from the exact values.

For the distribution U [0.49913, 0.50087], the coefficient of variation V = 0.001.
The distributions U [0.49913, 0.50087] and Γ(0.001) are close to the degenerate
distribution with V = 0, therefore, the initial moments, roots of equations (5.1)
and deviations ∆r(F ) of these distributions practically coincide. For convenience,
we introduce a new designation U(0.001) for distribution U [0.49913, 0.50087].

In Table 2, we present information about properties of the roots of system (5.1)
for different distributions in the case when r = 6. For all represented distributions
real parts of complex roots µs are positive. For distributions with coefficient of
variation V > 1, all roots of system (5.1) are real, positive and non-paradoxical.
Calculations show that the properties of solutions of systems (2.1), (3.1) and (4.1)
in the sense of their signs and that there are real or complex ones among them,
basically repeat the properties of the roots βs (1 ≤ s ≤ r) of system (5.1).
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Table 1. Values of the absolute deviation ∆r(F ) for different distributions

Distribution name ∆2(F ) ∆3(F ) ∆4(F ) ∆5(F ) ∆6(F )

Γ(0.001) 0.1811 0.1304 0.1046 0.0888 0.0773
U [0.49913, 0.50087] 0.1810 0.1302 0.1046 0.0886 0.0773
U [0, 1] 0.0570 0.0316 0.0205 0.0147 0.0112
Γ(0.3) 0.0718 0.0240 7.2 · 10−3 1.9 · 10−3 4.0 · 10−4

W (0.3) 0.0770 0.0310 0.0135 6.2 · 10−3 2.9 · 10−3

Γ(0.7) 3.7 · 10−4 3.6 · 10−5 6.8 · 10−6 1.9 · 10−6 6.4 · 10−7

W (0.7) 3.6 · 10−3 1.3 · 10−3 2.8 · 10−4 ∞ 3.1 · 10−5

W (0.8) 2.1 · 10−3 ∞ 2.2 · 10−4 6.2 · 10−5 ∞
W (0.9) 2.5 · 10−3 2.6 · 10−4 ∞ 5.5 · 10−5 2.4 · 10−5

W (0.95) 1.6 · 10−3 2.7 · 10−4 6.5 · 10−5 ∞ 1.8 · 10−5

Γ(0.9) 2.7 · 10−3 5.6 · 10−4 1.7 · 10−4 6.8 · 10−5 3.1 · 10−5

Γ(1.5) 0.0307 0.0109 5.1 · 10−3 2.7 · 10−3 1.7 · 10−3

Γ(2) 0.0658 0.0265 0.0135 7.9 · 10−3 5.1 · 10−3

Γ(4) 0.1573 0.0706 0.0393 0.0248 0.0170
W (3) 0.1986 0.1395 0.1085 0.0893 0.0762

Table 2. Properties of the roots of system (5.1) for different distributions
(case when r = 6)

Distri- Number of Number of Number of Number of Number of
bution complex complex βs with real real
name roots βs roots µs Reβs < 0 βs /∈ [0, 1] µs < 0

Γ(0.001) 6 6 4 0 0
U(0.001) 6 6 4 0 0
U [0, 1] 6 6 2 0 0
Γ(0.3) 6 6 4 0 0
W (0.3) 6 6 2 0 0
Γ(0.7) 2 2 0 0 0
W (0.7) 4 4 2 2 0
W (0.8) 4 4 2 2 1
W (0.9) 2 2 2 4 0
W (0.95) 2 2 0 3 0
Γ(0.9) 0 0 0 6 0

6. Numerical results

To identify closed systems, we introduce the standard notation used for queue-
ing systems. Let us present the results of calculating steady-state probabili-
ties on examples of the M/U(0.001)/n/10, M/U [0, 1]/n/10, M/Γ(0.7)/n/10,
M/W (0.9)/n/10, M/Γ(1.5)/n/10, M/Γ(2)/n/10 and M/Γ(4)/n/10 closed sys-
tems in the cases when n = 1, n = 2 and n = 3. We assume that customers arrive
to the queueing system from m = 10 identical sources.

We take λ = 1 and E(Tsv) = 0.5, where E(Tsv) denote the mean of the service
times.



10 SOLTAN A. ALIYEV, YAROSLAV I. YELEYKO, AND YURIY V. ZHERNOVYI

For single-channel systems, we test the obtained results using the method of
potentials [8], which allows us to calculate the steady-state probabilities pk of the
presence k customers in the M/G/1/m closed queueing system.

For cases of two and three channels, the obtained results are verified using
simulation models constructed with the help of the GPSS World tools [7]. The
results obtained using GPSS World slightly differ from one another for differ-
ent numbers of library random-number generators used for simulating random
variables. Therefore, we use averaged results obtained using simulation models
with different values of random-numbers generators that take on values of natural
numbers from 6 to 10.

Let us introduce the designation: N and σ are the mean and standard deviation
of the number of customers in a closed queueing system respectively, and

∆(r,r−1) =
10∑

k=0

|pk(r) − pk(r−1)|, ∆(6,r) =
10∑

k=0

|pk(6) − pk(r)|,

∆r(Pot) =
10∑

k=0

|pk(r) − pk(Pot)|, ∆r(sim) =
10∑

k=0

|pk(r) − pk(sim)|,

pk(sim) =
1
5

10∑

i=6

pk(sim,i), 0 ≤ k ≤ 10, 2 ≤ r ≤ 6.

Here pk(Pot) and pk(r) are values of probabilities pk, obtained using the method
of potentials and Hr-approximation respectively (pk(Pot) = pk); pk(sim) is the
average value of probabilities pk(sim,i), obtained by means of the simulation model
using the number i of random-numbers generator for i ∈ {6, . . . , 10}. Thus, the
quantities ∆r(Pot) and ∆r(sim) are measures of deviations of the distributions
{pk(r)} from distributions {pk(Pot)} and {pk(sim)}, respectively, and the quantities
∆(r,r−1) and ∆(6,r) give an opportunity to estimate the deviation of distributions
{pk(r)} from distributions {pk(r−1)} and {pk(6)}, respectively. Simulation time for
GPSS World is taken equal to 5 · 106.

In Table 3 and 4 we have results of the calculation of steady-state character-
istics of the M/G/1/10 and M/G/n/10 (n = 2, 3) closed systems respectively,
with considered gamma, Weibull and uniform distributions of service times.

The values of ∆r(Pot) and ∆(6,r) (2 ≤ r ≤ 5) in Table 3 are either identical
or at least are numbers of the same order. Note that only for the distribution
Γ(4) the deviations ∆5(Pot) and ∆(6,5) are numbers that differ in one order. This
means that in most cases we can use values ∆(6,r) to evaluate the accuracy of the
approximation of the distribution {pk(r)} to the true {pk} for r ∈ {2, . . . , 5}.

The results presented in Table 3, indicate that the values of absolute devi-
ations ∆r(Pot) and ∆(6,r) decrease with increasing order of Hr-distributions in
approximations, as well as the values of ∆(r,r−1), which decrease with increas-
ing of r, means that the values of distribution {pk(r)} with each step getting
closer to a true distribution {pk}. With the growth of the variation coefficient
of distributions after the value of V > 1, as expected taking into account the
behavior of deviations ∆r(F ), the values of the absolute deviations ∆r(Pot) and
∆(6,r) also increase. For the distribution W (0.9) the deviation ∆4(F ) = ∞ and,
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Table 3. Results of the calculation of steady-state characteristics of the
M/G/1/10 closed systems with different G-distributions

G-distri- Charac- Method of calculation and values of characteristics
buion teristic Hr-approximation Poten-
name name r = 2 r = 3 r = 4 r = 5 r = 6 tials

N 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000
U(0.001) ∆r(Pot) 0.0111 0.0003 4 · 10−6 7 · 10−8 2 · 10−9 −

∆(r,r−1) − 0.0111 0.0003 4 · 10−6 7 · 10−8 −
∆(6,r) 0.0111 0.0003 4 · 10−6 7 · 10−8 − −
N 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000

U [0, 1] ∆r(Pot) 0.0084 0.0004 2 · 10−5 6 · 10−7 2 · 10−8 −
∆(r,r−1) − 0.0084 0.0004 2 · 10−5 6 · 10−7 −
∆(6,r) 0.0084 0.0004 2 · 10−5 6 · 10−7 − −
N 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000

Γ(0.7) ∆r(Pot) 7 · 10−5 8 · 10−7 2 · 10−8 4 · 10−10 1 · 10−11 −
∆(r,r−1) − 7 · 10−5 8 · 10−7 2 · 10−8 4 · 10−10 −
∆(6,r) 7 · 10−5 8 · 10−7 2 · 10−8 4 · 10−10 − −
N 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000

W (0.9) ∆r(Pot) 0.0007 6 · 10−6 1 · 10−5 6 · 10−8 4 · 10−9 −
∆(r,r−1) − 0.0007 1 · 10−5 1 · 10−5 5 · 10−8 −
∆(6,r) 0.0007 6 · 10−6 1 · 10−5 5 · 10−8 − −
N 8.0012 8.0017 8.0018 8.0018 8.0018 8.0018

Γ(1.5) ∆r(Pot) 0.0130 0.0012 0.0002 2 · 10−5 7 · 10−6 −
∆(r,r−1) − 0.0127 0.0011 0.0001 2 · 10−5 −
∆(6,r) 0.0130 0.0012 0.0002 2 · 10−5 − −
N 8.0046 8.0084 8.0094 8.0096 8.0097 8.0097

Γ(2) ∆r(Pot) 0.0356 0.0053 0.0011 0.0004 0.0001 −
∆(r,r−1) − 0.0337 0.0046 0.0010 0.0003 −
∆(6,r) 0.0357 0.0053 0.0011 0.0003 − −
N 8.0285 8.0701 8.0847 8.0894 8.0910 8.0921

Γ(4) ∆r(Pot) 0.1381 0.0587 0.0234 0.0112 0.0062 −
∆(r,r−1) − 0.1237 0.0397 0.0148 0.0063 −
∆(6,r) 0.1383 0.0577 0.0201 0.0063 − −

consequently, we have that ∆(6,4) > ∆(6,3), that is, for r = 4 convergence to the
true distribution slows down.

We do not represent in Table 3 values of deviations ∆r(sim), but we can note
that these values are no less than 10−4 for any distributions. Only for the Γ(4)
distribution the deviation of the distribution {pk(sim)} from the true distribution
{pk} is smaller than this deviation for the distribution {pk(r)}. In cases where
the deviation ∆(6,5) is less than 10−2, the deviation of the distribution {pk(r)}
from the true distribution {pk} and deviation ∆(r+1,r) are numbers of the same
order. Thus, in these cases we can use values ∆(r,r−1) to evaluate accuracy of
the approximation of the distribution {pk(r−1)} to the true {pk} for 3 ≤ r ≤ 6.

In cases where ∆(r,r−1) < 10−4, we can argue that the distribution {pk(r−1)} is
more accurate approximation than {pk(sim)}.
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Table 4. Results of the calculation of steady-state characteristics of the
M/G/n/10 closed systems with different G-distributions for n = 2 and n = 3

G-distri- Charac- Method of calculation and values of characteristics
buion teristic Hr-approximation GPSS

name, n name r = 2 r = 3 r = 4 r = 5 r = 6 World
U(0.001), N 6.0027 6.0036 6.0035 6.0035 6.0035 6.0022

n = 2 ∆r(sim) 0.0128 0.0091 0.0092 0.0090 0.0071 −
∆(r,r−1) − 0.0071 0.0003 0.0002 0.0019 −

U(0.001), N 4.3266 4.3309 4.3283 4.3269 4.3257 4.3253
n = 3 ∆r(sim) 0.0175 0.0125 0.0072 0.0040 0.0015 −

∆(r,r−1) − 0.0239 0.0096 0.0046 0.0026 −
U [0, 1], N 6.0136 6.0149 6.0148 6.0148 6.0148 6.0144
n = 2 ∆r(sim) 0.0056 0.0008 0.0005 0.0005 0.0005 −

∆(r,r−1) − 0.0059 0.0005 0.0001 3 · 10−5 −
U [0, 1], N 4.4038 4.4076 4.4071 4.4073 4.4072 4.4071
n = 3 ∆r(sim) 0.0094 0.0022 0.0011 0.0006 0.0005 −

∆(r,r−1) − 0.0110 0.0031 0.0012 0.0004 −
Γ(0.7), N 6.0171 6.0171 6.0172 6.0172 6.0172 6.0164
n = 2 ∆r(sim) 0.0008 0.0008 0.0008 0.0008 0.0008 −

∆(r,r−1) − 5 · 10−5 1 · 10−6 9 · 10−8 1 · 10−8 −
Γ(0.7), N 4.4230 4.4230 4.4230 4.4230 4.4230 4.4224
n = 3 ∆r(sim) 0.0006 0.0005 0.0005 0.0005 0.0005 −

∆(r,r−1) − 0.0001 8 · 10−6 1 · 10−6 2 · 10−7 −
W (0.9), N 6.0302 6.0301 6.0301 6.0301 6.0301 6.0297
n = 2 ∆r(sim) 0.0008 0.0004 0.0004 0.0004 0.0004 −

∆(r,r−1) − 0.0005 6 · 10−6 2 · 10−5 1 · 10−6 −
W (0.9), N 4.4714 4.4710 4.4710 4.4710 4.4710 4.4706
n = 3 ∆r(sim) 0.0009 0.0005 0.0005 0.0005 0.0005 −

∆(r,r−1) − 0.0010 1 · 10−5 9 · 10−5 7 · 10−6 −
Γ(1.5), N 6.0848 6.0898 6.0905 6.0907 6.0907 6.0906
n = 2 ∆r(sim) 0.0145 0.0030 0.0012 0.0009 0.0008 −

∆(r,r−1) − 0.0124 0.0021 0.0006 0.0002 −
Γ(1.5), N 4.6036 4.6119 4.6131 4.6134 4.6135 4.6139
n = 3 ∆r(sim) 0.0216 0.0066 0.0025 0.0010 0.0005 −

∆(r,r−1) − 0.0174 0.0045 0.0016 0.0006 −
Γ(2), N 6.1347 6.1519 6.1552 6.1560 6.1562 6.1570
n = 2 ∆r(sim) 0.0473 0.0126 0.0043 0.0022 0.0012 −

∆(r,r−1) − 0.0399 0.0095 0.0030 0.0012 −
Γ(2), N 4.6914 4.7160 4.7207 4.7220 4.7224 4.7233
n = 3 ∆r(sim) 0.0624 0.0212 0.0092 0.0042 0.0022 −

∆(r,r−1) − 0.0478 0.0146 0.0055 0.0024 −
Γ(4), N 6.2591 6.3473 6.3742 6.3829 6.3861 6.3878
n = 2 ∆r(sim) 0.2295 0.0967 0.0446 0.0239 0.0136 −

∆(r,r−1) − 0.1696 0.0604 0.0248 0.0115 −
Γ(4), N 4.8694 4.9744 5.0056 5.0158 5.0196 5.0212
n = 3 ∆r(sim) 0.2486 0.1090 0.0540 0.0305 0.0174 −

∆(r,r−1) − 0.1768 0.0641 0.0276 0.0135 −



CALCULATING STEADY-STATE PROBABILITIES OF CLOSED QUEUEING SYSTEMS . . .13

Table 5. Values of ∆6(F ), σ and ∆(6,5) for the M/W (V )/n/10 closed systems
with different V, for λ = 1, n = 1, 2, 3, λ = 2, n = 2 and λ = 3, n = 3

Charac- Values of σ and ∆(6,5) for different n and λ
V ∆6(F ) teristic n = 1, n = 2, n = 3, n = 2, n = 3,

name λ = 1 λ = 1 λ = 1 λ = 2 λ = 3
0.1 0.0364 σ 1.05 1.47 1.60 1.08 1.12

∆(6,5) 7 · 10−8 2 · 10−5 6 · 10−4 4 · 10−7 9 · 10−7

0.2 0.0115 σ 1.06 1.49 1.62 1.10 1.13
∆(6,5) 6 · 10−8 7 · 10−6 3 · 10−4 3 · 10−7 1 · 10−6

0.3 0.0029 σ 1.08 1.52 1.65 1.12 1.15
∆(6,5) 6 · 10−8 4 · 10−6 2 · 10−4 3 · 10−7 9 · 10−7

0.4 6 · 10−4 σ 1.11 1.57 1.68 1.15 1.18
∆(6,5) 5 · 10−8 2 · 10−6 6 · 10−5 2 · 10−7 6 · 10−7

0.5 9 · 10−5 σ 1.15 1.62 1.73 1.18 1.21
∆(6,5) 4 · 10−8 1 · 10−6 2 · 10−5 1 · 10−7 4 · 10−7

0.6 3 · 10−5 σ 1.20 1.68 1.77 1.23 1.25
∆(6,5) 4 · 10−8 6 · 10−7 8 · 10−6 1 · 10−7 3 · 10−7

0.7 3 · 10−5 σ 1.25 1.74 1.83 1.27 1.29
∆(6,5) 6 · 10−8 2 · 10−6 3 · 10−5 3 · 10−7 1 · 10−6

0.8 ∞ σ 1.30 1.81 1.88 1.32 1.33
∆(6,5) 4 · 10−8 2 · 10−6 2 · 10−5 2 · 10−7 9 · 10−6

0.9 2 · 10−5 σ 1.36 1.87 1.93 1.36 1.37
∆(6,5) 5 · 10−8 1 · 10−6 7 · 10−6 2 · 10−7 6 · 10−7

1.1 1 · 10−4 σ 1.47 2.01 2.04 1.46 1.45
∆(6,5) 1 · 10−6 8 · 10−6 4 · 10−5 3 · 10−6 7 · 10−6

1.2 4 · 10−4 σ 1.53 2.07 2.09 1.51 1.50
∆(6,5) 9 · 10−6 3 · 10−5 1 · 10−4 2 · 10−5 4 · 10−5

1.3 0.0010 σ 1.58 2.13 2.14 1.56 1.54
∆(6,5) 3 · 10−5 1 · 10−4 3 · 10−4 7 · 10−5 1 · 10−4

1.4 0.0019 σ 1.64 2.22 2.21 1.64 1.61
∆(6,5) 9 · 10−5 2 · 10−4 6 · 10−4 2 · 10−4 3 · 10−4

If we follow criterion ∆(6,5) < 10−4, for determining the accuracy of the distri-
butions {pk(r)} obtained by the method of Hr-approximation, then according to
the results presented in Table 4 for systems with two and three channels, we con-
clude that the distribution {pk(6)} is more accurate approximation than {pk(sim)}
for the M/U [0, 1]/2/10, M/Γ(0.7)/2/10, M/Γ(0.7)/3/10, M/W (0.9)/2/10 and
M/W (0.9)/3/10 systems. For the rest of the considered systems, except for sys-
tems with the Γ(4) distributions, the accuracy of the results obtained by both
methods is comparable. For single-channel systems (see Table 3), inequality
∆(6,5) > 10−4 is satisfied only for the cases of Γ(2) and Γ(4) distributions. Thus,
an increase in the number of channels leads to a decrease in the accuracy of the
obtained approximate distribution {pk(r)}.

However, we note that the results, presented in Tables 3 and 4, were obtained
for constant values of λ = 1 and E(Tsv) = 0.5, therefore the system load factor
ρ = λE(Tsv)/n varies with the number of channels n: ρ = 0.5, 0.25 and 1/6 for
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n = 1, 2 and 3, respectively. Let us study the influence of the load factor on the
accuracy of the obtained results using the example of systems with service times
distributed according to the Weibull law. In Table 5 we have values of ∆6(F ),
σ and ∆(6,5) for the M/W (V )/n/10 closed systems with different coefficients of
variation V, for λ = 1, n = 1, 2, 3, λ = 2, n = 2 and λ = 3, n = 3. In cases when
λ = n = 1, λ = n = 2 and λ = n = 3 the load factor remains unchanged: ρ = 0.5.

We see that for a fixed value of the variation coefficient V, an increase in ρ leads
to an increase in the standard deviation σ and deviation ∆(6,5). At the same time,
for a fixed value of V and ρ, an increase in the number of channels n leads to an
insignificant increase in σ and ∆(6,5).

The data in Table 5 allows us to analyze the influence of changes in the varia-
tion coefficient V on values of ∆6(F ), σ and ∆(6,5). The minimum values of the
deviations ∆6(F ) and ∆(6,5) are achieved when V = 0.6. With increasing V for
values V > 1 the values of ∆6(F ), σ and ∆(6,5) increase sharply. For V = 0.8
we have that ∆6(F ) = ∞, but only in the case λ = n = 3 this leads to a slight
increase in the value of ∆(6,5).

The values of ∆(6,5) in Table 5 for which the inequality ∆(6,5) > 10−4 holds,
are shown in bold. For these cases the accuracy of the results obtained by the
method of Hr-approximation and using GPSS World is comparable. For most
cases, the distribution {pk(6)} is more accurate approximation than {pk(sim)}.
Calculations show that for most cases, the results obtained for the M/Γ(V )/n/10
closed systems with gamma distributions of service times are more accurate than
for Weibull distributions.

7. Conclusions

This paper shows that the application of hyperexponential approximation of
the service times distributions allows us to calculate steady-state probability dis-
tributions of the M/G/n/m closed queueing systems for n = 1, 2 and 3 with high
accuracy. For G-distributions with variation coefficient satisfying the condition
V < 1.4, the accuracy can by higher than in the case of using simulation mod-
els. The accuracy of finding the steady-state probability distributions depends
on both the variation coefficient V of service times and the system load factor
ρ. We find these probability distributions using solutions of a system of linear
algebraic equations obtained by the method of fictitious phases.

To obtain parameters of Hr-approximation of a certain distribution it is nec-
essary to solve the system of equations of the moments method. For the values
V < 1 of the variation coefficient, some of the roots of this system are complex-
valued or, having a sense of probabilities, go beyond the interval [0, 1], but in
most cases the final result is close to the desired distribution {pk}.

Computing deviations ∆(r,r−1) allows us to track the accuracy of approaching
distributions {pk(r−1)} to the true distribution {pk} without the need to use
simulation models.
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