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1. INTRODUCTION

To produce refractory metals and alloys one can use vacuum
glectron-beam autocrucible melting (EBAM) which 18 one oI the
special methods of casting. The main advantage of this method (in
comparison with others methods of the special electrometallurgy) 18
s higher degree of metal refining from harmful admixtures, nonmeta-
11ic and gas inclusions. Complexity of thermal, hydrodynamical and
physicochemical processes in an autocrucible, high temperatures,
profound vacuum not only essentially complicate experimental
studies of temperature fields in a melted portion of material but
also, for some refractory metals, make such studles problematical.
In this connectlon, besides experimental methods, mathematical me-
thods of computation and prediction of thermal and kinetic charac-
teristics of the melting process play a decisive Tole.

An autocrucible has a cylindrical form (Fig.1), 1its lateral
surface (r=a) and bottom surface (2=0) are cooled, and energy
absorption of the electron-beam heatlng with & flux density g oc-
eurs on the surface 2z=1 in the focal spot of radius bea. The oOb-
tained thermal energy 1s speant on metal heating, on melting heat,
that can be represented by heat flows distributed along a melting
1sotherm (a interface between the golid and liquid phases) with &
constant linear density. Besides, heat exchange with enclosing me-
dium (a contour being cooled by water) by means of conduction &and
radiation in & relation being difficultly controlled occurs from
the lateral and bottom surfaces. The heat losses by means of radia-
tion and evaporstion take piace from the surface being heated.

The EBAM 18 realized with application of the melt electromag-
netic stirring (MENS) over the whole volume of the liguid pooi
enabling to increase the end metal discharge. Complete mathematlcal
models 1n the form of & 88t of differential equaiions of heat and
mass transfer with account of hydrodynamic and electromagnetlc
processes can be used for melting process modeling. Such models
are extremely labortous and their numerical reallzation needs much
expenses of machine time. In order to determine basic technologleal
parameters of the EBAM process on the basis of numerical calculatl-
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ong it is advantageous to use simplified mathematical models [1-8]
based on special statements of heat conduction problems including
mﬂﬂ change metal-melt (Stefan problems). It is necessary to find
temperature fields in solld and liquid metal as well as its moving
isothermal surface on which absorption of the melting heat takes
place.

2. MATHEMATICAL MODELS WITH ONE SPACE VARIABLE
1 the rom spot 18 & circle mm the tanperattu'a nem 18

) "q_

deration the m&-ﬂimional Stefan ;u:nhlw ror m "equivalent"
spherical shell. We shall determine the interior radius of such
ball, r ., from the condition of equality of the focal spot area,

b, and the hemigphere area, 2ar2 ( r.=27'7%b); eand the exte-
ror radius from the condiilon of equality of the cylinder mlm‘e.
#a?1, and half of the spherical shell volume, 2x(r3-rd)/3
+ 3"1/2)"'/7),  Others ways of geometry recsleulation are pmible
herel

In these aastmptions T<7(r,t) and the 180

a sphere r=R(t), We introduce the following ¢
les and parameters:

r=rz, t=alrl, el (T-T00 af=d /G
V=N, op =epkie), R /A, P Pep (T
Q(8) = g - S(OIUL(O)],  qr, = gA (T - T). S(8) = S (me)*,
$.= ._s'oi_.-t_(-_"f_-_-. T, = T AT - T, Q. () = eol'Lq8),
KO = RO/ z=r/r, 3=AA. k=cp/ep).
Irmshallmlectbymenngm thaam‘!’mbaingeooleﬂ then
we shall obtained the one-dimensional Stefan mhlem

"% -;,3* (1@ 7;-] - k(8) *:,;— -~ PRRY()8te-R(T)) = 0, T z<t, O,

8(z,0) = §(2)s T x<t,  $Z) = K (1)
2.




86 . e '
oz =~ UB), T 4 he =0, z=1, ©0; &(X(t).t) =

Here the following notations were introduced: T, 1s the water tem-
perature in a cooling system, T_ is the meltmg -temperature, 1 =
=¢onst, A =consi are the themal conductivity coefficienta mr
ligquid anﬂ s0lid phase respectively, ¢, =consi, C o =const, p =const,
pg=const are the specific heat and density for llquid and solld
phase respectively, « 18 the coefficleat of heat exchange with a
contour being cooled by water; p=Ap , A 18 the latent melting
heat; ¢ 18 the electron-beam heating power density belng absorbed
by the metal; e, 0 are the blackness degree and Stefan-Bollizmann
constant; QB,('!'I 18 the heat flux density of evaporation; y(g) =
=3+ (1-7)n(6-1), k(8) = K + (1-Kin(8-1), n(e) 1s the Heavyside

function; S, 18 the Stark coefficilent; =X(t)=dX/dr; &(x) 1s the

Dirac function with the weight z®; e(z) 1s an initial dimension-
1ess temperature distribution being & result of evolution of a 8O-
Tution of the usual heat conduction problem (1) with P=0  and
6(2,0)=0 to a moment v, at which the metal gurface 2=z, 18
heated to the melting temperature 6(z, .t )=1 (this moment 18 taken
a8 the gero of time). '

AT an electron beam power which is consteat or wmonotonlcally
increases up to some 1imiting value ( g(t) g=const ) @& eteady
gtate 18 established with the courss of the time ( &(z.t) &(Z),
X(r) =z =const ). To determine 1t we obtain a stationary Stefan
problem admitting the exact analytical solution

8 -z Q8 )(1-z /T), I srs T, '
e{s} & { 00 o Q /] - [2}
2 F(z)/F(z,)2), z,s2¢ 1,
hr (8. + 3 - 1) h(8 _+ - 1)
3'7‘- o 9 1 . qteo) e~ 4_..__2......’_.__ " (31
th + Z (h-1)(8,-1) 2 F(z,)

where F(y) =h + (1-h)y, and en=&(::°) ig defined as an unlque
positive root of the equation Q(8) + S(8)(1+L(8)) = q,.
from this solution we obtain practically important dependenices

of the melt volume, W, and the melt overheating, AT =T - 7, & 2
18 & mean temperature of the 1iquid metal) on Input datm, that 1s
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on gamtry. thermophysical psmtm intensity of tha MEMS ( *=
=1/y ), and electron beam power '

W= w't:’ :r')-. y: 4)

z2 272
AT = -M‘—")t! r)Qe). (5)

2:'(@’-&.1::4'.1:')

A sinple enalysis shows that with an increase of the 1in-
tenglty the melt volume increases and the melt overheating decrea-
ses. Dependence of the heat flux density on the eurface temperatu-
re & ( qupon T(r) ) sharply increases when the surface tempera-
hmaohlevea toauutmgmua 6, mainly at the expense of an
increase of the evaporation losses 5(6,)I(8 ). therefore a further
increase of the temperature 8 raqm.ruanmmhl!blgimm-
mo:theelecmheaupmr Functional dependences :
permit to nm thermophysical characteristics 1". l,. « and the

MENS retlo k=1 /, using additional experimental information
such as, for enap‘!.e, the melt volume, the melt overheating and the y

mennoxogi : ties of the melting process req
obtatning of a Geterninate melt mass (of & iqut

we can tmd I:asm Ianmg mm"

and AT preassigned under the condition of & stw-nnte diat-
ributlon of the metal ftemperature.
To this end we shall find %, mtneﬁrst formula (3)

8,= [1n2,- g, m - P 1)/ fe pan].

Ellminating 0 _with the help of (6) we obtain from the righ
of tha aecond aqmuty (3

ate,) = no/[ RriRa)]

substituting (7) into (5} we Tind




nMegr T3, ~ NP - T,)

(8)
T3+ TT,+ THIFE,)

e
u

Taking into account thnt ace,) = qu S(e )1+ L8 )], we have
from (T)

go= 58)[ 1+ Lo, | + ne,/| k2H(z,)]. ECY)

Thus, the determination of the basic melting parameters (1
the 1iquid pool volume W and melt overheating AP are given) we
can conduct by the following scheme. For a knovm value of W  we
find from (4)

z.= ——— (3 + zu’r }“’
T

later we determine k Wwith the help of (8), farther we obtaln &
value of @, (6) and a value of g, from (3). With the help of g,
we find ths necessary heat flux power density of an electron beam

g = B (T - T,)q/r,.

The evolution of the temperature field e(z,t) of the probles
(1) 18 confined between & known initial distributicn, 8(2.0) =0,
and 1imiting sieady-state one 6(7,«) = (z). In additlon we Kknow
& priori a monotone character of @(z,v) dependences on z as well
s on t. Thig permits to take an approximate solution In the form

(2) with constants 6 and 2, replaced by unknown functions 6 (t)

and X{1)
o 8 (t)-z. Q6 (t)it-z /z), T.=r= X(1),
8(2,1) & 8(Z.1) = { il s 0 0 (10)

Xit)F(r)/(FlX(t))zl, ¥t) sz= 1.
If
£2P(z_ )0, (1))
)= X)) = ——fef—0v (11)
h + & (h- 1)(e°tt} -1)

then construction (10) satisfies the boundary conditlons of the
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problem (1) a8 well es the continuity condition for z=X{t). Requi-
ring the golution to satisfy the differential equation of an
overall heat balance in the integral form ;

1 o ~ g o~ g
[ [ 5 (P16 53] - k) g - @R =0,
:&u

atter computing the derfvatives and integrals &nd eliminating of
Z17) with the help of (11) we arrive to & Ceuchy problem for €,(t)
. = | N
K(9,)d9 /d% = A8,) + BC(O,), T> 0, 6,0 = 1. (12)
Here '
A0, = 22[ate,) - neg, .t 1 - W/t BE ] 8oz 8 te)
B = jh/P(X ). Z,= X(6,), ' C(8,) = (Z,- X(B,))/F(X(S,)),

- \ R 1R 12

g 20e°3) - 2,(2,420) (2-2,)°0(0)/8 ;1
&atit- g (- o0/
The solution of the problem (12) 1s determined by the quadrature
o T '

0
t =_¥ Koy [ae) + BO@Y]dB, © 1 <0 = 0, (13)

The 1dea to construct approximate solutions using "freed” parame-
ters Zoes back to worke by Leibenzon, Krylov, Bogolyubov and Mitro-

The melting process in the model problem considered has & cha-
racteristic feature consisting in nearness of an asymptotic behavi-
or of the solution for large values of t to & logarithmic .one.
The first passage time of 95% of the gsteady-state value of the
1iquid pool surface temperature 8 _ than the correspon-
ding tirst passage time of z,. Thls corresponds to the thermophy-
sleal gense because the melting process 1s continued arter the tem-
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perature @ (t) attains of:the almost 1imiting maximl value &
Just &s In the steady-state case, with 1intensifying of the m
there will be a decrease of the melt overheating and an increase of
the melt volume.

To make dynamics of the melting process more preﬂise. we have
used a variational method essentially using a construction of an
exact solution of the stsady-state Stpfan problem on every segment
z, . (¥)szsz (v) belonging to an arbitrary decomposition of the
whole segnent I s T =1

~ -l L
o(z.) = 8, _ (U + g (-2l ). 2, (1) =2 =2 (1),

Boundary conditions, conditions of isothermality and continuity at
the decompositions points z=r (1) give a set of nonlinear equati-
ons, whereas conditlons of the Bubnov-Galerkin method give & pel of
nonlinear ordinary differential equations for unknown functicns
g,(x), & coordinate of & melting 1sotherm X(t), and auxiliary
nmctinm p,(t). A8 & result the problem reduces to a Cauchy pro-
blem the aolu.tion of which 1g easily obtained using a computer by &
numerical procedure. The computations sccomplished for particular
variants have shown the melt volume dynamics have well corresponded
to the dynamice obtained on the basis of solution (10), (11) In the
simplest casa where the segment I s 7 s 1 have been decamposed
into only two partis, :szsxu) and X(tis 7z s 1.

To estimate the obtamed approximate analytical solutions e
have also applied an impliclt dirference scheme with algebraic
squations being linearized in every temporal “slice™ of the Stefan
problem for the isotherm field z = 2(8,1):

20 (1(0)5 /5g)y ¢ K(OIE+ P (1,0)8(6~1) = 0, B, (1)<d<o (1), DO,
7(6,0) = x,(8), $(1) =0.(0) 59580 =1,
r(e (r),1) = 1, 26 (1), 0y =T, T7 0, (14)
/25 = - ho, 628 (¥} /29 = - Q(6), #=8,(V), T2 0,

where z,(6) 15 the inverse function for e(z): @ (r) and 8,(0)
are !tinirmn and maximum temperatures regpectively to be Tound.

The aesage from the Stefan problem (1) for the Lamparature
field to the probiem (14] for the lsotherm field 1s reslieed with
the halp of the formulas of inverse functlons differentiation and
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the formula of the Dirac function trensformation:
8,2 /g 8= - Z/Tq, O/6T =T3'6/881 T = Ble-1)/z,.

'Ebia passage 18 competent provided that one-to-one eomsponﬂanee
between the coordinate z and the temperatute 6 for every time t
takes place. mmmmmmawmmmmm for
the solution z = z(6,r) under the condition that both an Initial
distribution z () and the heat flux Q(6) are monotonous.

“In the !omﬂstion (14) 1t 18 necessary to determine the
isotherm field (6.t) mumtwpanme{t)ame(ti. Des-
pite an apparent complication, the problem (14) proves to be more
gimple as regards a realization on the implicit difference scheme
11 1t will be considered &s a usual nonlinear conjugation problem
with uinown moyving boundaries being detemmined by mmm
mﬁm.

Mmtotmmblwatmmmﬂulm.wman— :
nimum value €, and & mazimm one euo:mdmmm tempe~
rature. m:mtram:ammammwummiun-;
temperature and the second one 1s equal to a maximm value being
-ati&ine&lnnstew-statam These values determine 8 cons-
tant segment of the dimensionless temperature's change containing
the point 6=1. All the intermediate intervals being corresponded
to an arbitrary value of t are contalned In thie segment eviden-
tlytheroe(tj and 8,0t ‘monotonously approaching at t = 1o
thelr 11m1t1n5 valuss attaim in the steady state. ‘This Tfeatire
permits on a difference level to use uniform decompositions of the

segnents [0, 1] and [1,9,1 into N end N" intervals respectively and
to determine values of @, (x) and @, (v) &t the nodes of such de-
 compositions in the mpnuum process. man for z,(8) we obtain
the set of the N +N'+¢t nonlinear algebr qua

'_‘ .l a; 1 < 1 £ i‘.r




0, 1=1"n,

oy - 20, 1% 14 N+ W1,

*® I=t i

_3-_‘

where the superscript "." denotes a valug eomapundina to the
preceding temporal slice. A
Linearizing this set with the help of the equatlons .
(2% ") e 202 Y7 (@ gt et ),
where the index "s" indicates an order of iteration in the temporal

glice considered, one can obtain the three-diagonal set of the
equations ’

I=1

At + BTt 402y =B, 1= 1L,N+ N AL

17 4et-
Here
Al= 0, B,: 15 Glt Q, Fl= Y 1 =13
2 P
A=n7, . B= (2% h{_ - hi- kn),
e= M. F=2y(h - N+ 20 - KEn), 1 ¢l <1
3 (= 2 -
‘it -h h\ol. Bi_ ‘h hlol* ]nrh 2 Pﬂ'
-3 8 + * - = gy
Ci=-h nis ’t' Fz.n - 2yh hl-l+ 2yh7h,, . B U
a ; 2 a 1
A=hi o B= 2 -Rhi-R-m C,=his
B=2h,, ~hr 2wy -3ne U1 ONENT 1
-‘l= ‘n 81= 0- c|= 0. ?l* Inl 1= u:

u -1 - - »_ - s
B= (-2 0 BT N, = (80N, v o= V/E, n = Vat,

1 A peculiarity of these sets 1s connected wich the number of
1 the equations in each a-th temporal slice. In the process of thelr
l- golving by the sweep method, the additional conditlona

1/Zg = = ho, 8=8, (1) Wz, = - Q8), 8=8 (1), (16}

should be checked. If these are satiafied, or rather 1inequalities
following from them are satisfied, going over to the next temporal
glice mey be performed, Otherwise the number of the equations 16
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changed, namely, 1t 18 increesed by 1 if the second condition (15)

is violated or decreased by 1 1f the first one 1n (15) 1a violated,

The numerical computatlons for particular problems have shown there

has been & computational stability 1f the number of the decomposi-
t1on points with respect to @ has been doubled under the condi-
tion of the equality of the minimum Btep (A" or h*)of & =and a
step of the time v. The question how to choose a relation betwsen
4t and h-49 remains open. According to the physical meaning of

the problem, with good resson one may assume that the optimal choi-
ge would be the equality of the steps. An analysis of the computa-
tions performed has permitted to trace a stabilization of tempera-
ture fields as well as isotherm fields to limiting steady satates.

A comparison has shown times of nearly complete attainment of the
gteady state ( 95% ) computed using formula (13) with 8,= 0.950,
8nd by a selection from results of difference scheme computations

are practically equal. The fields 2=<r(8.1), 0=0(z,.7) are also

coordinated satiefactorily with the approximate analytical soluti-

ons obtained. _ ;

It 18 quite naturally that a tabular information about solu-
tions obtained with the help of a difference scheme 1s considerably
poorer In comparison with an analytical one with respect to functi-
onal dependences between basic and input parameters of the melting

process, solution of inverse problems, predicilon and optimization
needed for engineering practice. In the same time results of nume-
Tical computations permit to evaluate an error of approximaie sana-
1ytical solutions which as & rule camnot be evaluated analytically,
The computations performed have shomn the approximate analytical
solutions obtained may be refined no more than 5-10%. -

3. MATHRMATICAL NODELS WITH TWO SPACE VARTABLES

dimensionsl axisymmetric onee. Orie may consider these mathematical
models essentlally correspond the thermophysical
model of the vacuum RBAN 1n an ¢ 1 autocrucible with the
lateral surface r-a and the bottom eurfsce 2z=0 being cooled
whersns on the top eurface 2<1 kinetic energy 20-40 keV elsctrons
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Tlux 18 converted into heat energy with the density ¢ = g(r,t). The
temperature field of the cylinder being heated 18 axisymmetric and
its determination requires of solving the nonlinear equation

4 2 aT 8 a7 . 8T
ra [!‘l(!'} ?] + E [l(l‘) Tz*] = 1(1‘)*;*— +
+ DrR (2,1)8(r-R(z,t)), ‘Ocr<a, Ocz<l, 150;
with the initial condition I v

r("lZlo) = ro(rlzl

and the boundary conditions

of . s
=0 r=0i (MG te ()T D)0, r=a;

A (D) Gz = e (PUP-T )=0, 2= 0; MT) 55 = Q(r.0)-1(T), 2z=1,
as mell as the conditlon on an Isothermal melting surface r=R(2,t)
T(R(Z.t) 2, 0)=0,.

Here y(T)=e(T)p(T),

@M, r <.
) @ (7)), I'al,
f{T)=e0?*+ n(P-7)Q_ (T) 18 the flux demsity of heat lossea at the
expense cf radiation and evaporation from the surface z=1  being
heated (n(F') 18 the Heavyside function); 1in the gensral case the
soefficiente of heat exchange on the surfaces being cooled a (2,
« (r) may be functicons of 2, r respectively.

According to & thermophysical meaning of the problem, there
would be a stabilization to & 1imiting steady state 1f overall
supplied heat flux is completely balanced by meais of the cooling
system and by heat losses nonnected with radiation and evaporation,
The steady-state equations of heat conduction and the bomdary con-
ditions are written In the form

()= { @=1; ¢ pi

1 & ot 4 af '
+ 5 [l‘(f)r }__J + 5 (1‘[1'; —5’—)- 0, (rzlen ., 1=8,1;

i1




N 8’ .
S =0 rE0i A (MG e @UT L)0, To=a; (16)

T _ o e o
AP o = & (PII-T,)=0, 2= 05 M(P)p= = QM)-F(T), 2 = 1.

Here the domain 0={ (r,2): Ocr<a; Ocz<l } 18 divided by the solid-
1iquid boundary into two subdomains 2= { (r,z)e Q: !‘(r.z]df }
and 8= { (r.2)e 0: l‘{r.z)>ﬂ' }, being corresponded to the eolm
and liquid phase of metal.

On an unknown solid-1iquid interface r=R(z) the equality con-
ditions of the metal temperature and the melting temperature as
well a8 of the heat fluxes from the sides of the liquid and solid
phases in the steady state must be fulfilled L

ar
T(R(2).2)=T ; A % =3 on . (17
r=R(z)-0 - r=R(2)+0

e shall use the well-known hypothesis that forced convective
heat transfer in the melt conditioned by the NENS may be Imitated

nth the help of the coefficlent of effective thermal conductivity,

A =’;a1 where 1 1s the coefficlent of molscular thermal conduc-

m_i-t_y. w5y detimine's ‘olieot | one may use the formula obtal-

ned as & result of experimental investigations of turbulent heat
transfer in the case of forced convectlon [91:

: .| 0.45(PrRg) 0+ 43¢ npR PrRe<8600;

- { 1.35-10"5(PrRe)'*®* npm PrRe>8600.

Taking into accomnt that PrRes2v r,C, /A, We ee R depends on
the heat capacity of the unit of the liquid metal volume ¢, and
& mean melt motion velocity v 8e well a8 on & meaapool radius r,

In the work (10] one used In eelqnlatim the value 2-10 for the
cage where electromametie stirring w 'ticlently Intense,

- hssuming the coefficient of effel ‘thermal conductivity ‘ltt
=const in the 11qnid phase domain, o =oonst, e (r) ==
=const, the stemly-state Stefan problem (16), (17) 18 transformed
to the fomm ~

(18}

._..;.. -Z—r [1(7‘;:" ;;*] ¥ ﬂ% [1(?]. '_:;!,'z_]t 0, [r'=j£a8=

12




g7 87

—Jr—G=0 (e

a7
=0 r=0 MMz +alf=al,. r=a (19

T : 2
AP 5z —a P =al. 220 U H =qr)-f(T) 2=1

r=R(2)-0 M ipizys0
We shall represent the function Q_ (7) designating the den-
Bity of the heat flux of evaporation In the form Q_ (T)=
=c ezp(-c,/T) where one may find the parameters c . ¢, uamg both
experimental investigations data and the Glapeymn—!lama: law
written for a thin gas layer closely approximating to the evapora-
tion surface, [11,12].
fo reduce the problem (19) to an equivalant nonlinear integral
equation we apply the Kirchhoff transformation
T,
w(f) =£ M1)dr.

o : a7
i'_- !‘.. r=R(z); l!ﬁn'T = M) =

If to approximate & dependence of the thermal conductivity coeffl-
clent on the temperature by the step function

ME)=, T, s I, 15K (= T, 1005 MD=R, BT

or by the linear dependence In the solid phase domain
A (1) = A (0) + BT - B), TPl i (D)3 MDA, BT,

we can find the inverse functlon 7T(u) in an analytical form.
It we exclude T(r.z), from (19) we obtain the simpler boundary
' mblan-ror 8 new unkmm function, u(r, z}.

au
(,--—-—) + -——-a 0, O«r<a, Ocz<ly —— +hu =0, r =0
ar
: (20)
su
ad w =0r=0 5 -hu=0,2=0 ii"ﬂ"‘)"ﬂﬂun- z=1

and the condition for the detemination of an Iinterface r=R(2)
f between the solid and liquid phases

13




WR(2).2) = u_. @n

| Here ho=a /A, . 1=1,2; where A, are mean values of A, on the
" surfaces r=g and 20 respectively; u = w(T ).
- We shall consider GCreen's functicn, G(rsz:p.n), determined
88 & solution of the linear boundary problem with the homogeneous
andary condttions 4
e r”’]a-ﬂ 8{r-p)8(2z-n)
— e— D — = - - .
roer b 8z® i B
. DB<rp<ca, 0<zapci;
w(u Zip.n) aG(a.z; <
_%_._._p_i =0, '-*'-j,;.—g-i *+ h.Gla.zip,n) = 0;

86_'-_{? . Oiﬂ sM)

8G(r, 13p,n)

P73 - h.etr.ozp.nl = 03 L e | 0,
where the formal relations for the Dirac funetion take place
1 . i a "

g 8,(2)8(z-n)de = g, (n), g 8,(M)8(r-pIrdr = g_(p).

The Green finction 1s found in the form
a1 0 Jd (1r) g (zm)

G(r.z;p.n) = — ) : ; ; ¥
e a® Zl 0‘? = 1:1{7"”7‘!) ¥ hn@"”-n”:“-‘.”

Where g, (2,1) = [y, ch(y 2) + N gty 2)Ich(y_ (1-n), zams g, (n.2)=
=8,(2.n}% 7 >0 are roots of the equation Ad (ya) - W, (7@) = 0;
J,(2) are the Bessel function of the Tirst kind and n-th order.

The problem (20) 1s reduced to an squivalent nonlinsar integ-
ral equation 5 =

' u(r.g) = u lr.g) « gGlmzsp,l'-}ﬂﬂutp._t)Upd_p. (22)

whers & '

u (r.g) = g gipIG(r.z:p,1)pdp. -

Substituting z=1 into (22) we arrive to the nonlinear inte-
gral Hammerstein squstion for determining the function wry=uir, 1)
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a -
vir) = v (r) - g G(r.p) LT (v(p)) 1pdp, (23)

where v (ri=u (r.1), G(r.p)=G(r,1:p,1). After solving integral
equatlon (23) the function wu(r,z) and the solid-1iguid interface
r=R(2) are found.from quadrature (22) and equation (21) respecti-
voly. 3 s

To find an approximate solution df equation (23) we approxima-
te u(r) by the step function and designating a mean integral va-
lue of u(r) on the interval (Py_yory) by v, where r are de-
composition points of the segment (0,al into M parts, After apply-
ing the variationsl method we obtain the gystem of the nonlinear
equations for determining of v, }=T.W , A

H
Oy =V - ) 6, KBw)), J=TH (24)
Img
where the constante v, . G, are foud bty the integratton of
known functions.
After finding of v , § =1,M , we can represent the nodified
temperature in the form Of & geries

2 ks
uree) = — Y. A, (8) (1,7, (25)

nmf

a ¥
where 4,(2)=[y, Jr‘qtr}-f,r L L (TR P TR
i=y
G RN A T ) V7 P;(r:m’:)[1n+h.—f7n~ﬁ']a¢p{-27nl}lu
wIg(1,0)3 g (2)=(y, +h dezp(-1 (1-2))4(y - h,Jezpl-y, (1+2)).

Using a simplified approach we can assume the coefficient of

effective thermal conductivity 1s & known humber (1, =const) inde-

pendent of a solution of the heat conduction problem. Ia that case
1%t remains to solve syatem (24).

Using an other approsch where & vaive of 1_=kh_ 1s determi-
ned in the course of solving of the problem we can use formula (28)

according to which R depends on & mean melt stirring velocity v,
and a mean radius of the liquid pool, r,. ¥e shall acsume the value
of u, 18 determined by the action intensity of the WMEMS ayetem

15




only. If the value of .u_1s given the determination of R 18 re-
duced to rinding of & mean integral value of the liquid pool radius
i 1 :
ro= [ Riz)dz/(12)) (26)
z,
over its depth, R—I—z v 18 also to be determined. Here 2, 18 &8
golution of the eqmnou R(z)=0. 1In thie case it 1s lmmasiblo

to find & solution of system (24) because the parameter k 1s used
for determining of a relation between the functions T and u,

Iet us describe of the solving procedure of the problem in
this case. Evidently we can find 3:5{!!,) from (18) sand compute
L =1a(r° ”‘:. for every value of r_ ¢ (0,0) and later we can solve
mtam (24). Further considering equation (21) for a sequence of
discrete values of Z, wecan find a gequence of corresponding
values of the function r.=R(z,) with the help of which we can
compute the right side of equality (26). Thus we can write relation
(26) 1n the form ‘

i re = ¥(r,), ; (21)
where ¥(r,) 18 a function which for every r,e (0,a) correlates

& computation result of the right side of (26) obtained in the way .
stated above. Thus, the detemination of & mesn integral value of
the pocl radius r, 18 practically reduced to the numerical solving
of functional eqmt‘lan {27) by an {terative

Thus, after finding an approximate solution of eqmtimi 27
we can find & coefficlent of effective thermal conduetivity A=

=R(r »JA ¢ & modified température f1eld ulr.z) and e aom-nqnm
boundary r=R(2z) a mean integral value of the radius of which 1is
equal to r,. The desired steady-state teiperature field P(r,z) is
determined by the inversion of the Kirchhoff transformation u(T).
The 1iquid pool volume ¥, the mean integral melt overheating

over the whole pool volume AT and the melt overheating on the
pool surface AT, are computed by mesns of the formulss

1 o 1 R(2)

W= af Reide, A1 e —— | [ rreraraz -1,
z, %0 8
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R(1)
= —— [ ororer - 1.,
Uora { -

In practice of the EBAM the heating 1s reslized by an  focused
electron beam scanning over the surface being heated according to a
given program (a circle, a splral, intersecting lines and others).

- Let us determine q(r) that 18 & steadv-state distribution of
the power density on the heating surface in the case of the scan of
an electron beam over the circle of radius O<R¢a. let -o, is a
focusing point of a beam situated on the plane 2z=1 and 100, i=R.
where O 18 situated on the same plane in the sautocrucible axis.
Let consider a point N(@) =a distance from which to the point 0
1s equal to r and one to the point 0, 18 equal to  y(#), where
B=<0 ON(B). AL the point ¥(2) a mlua of the power density 1s

equal to qexpl-k y*(8)) where y°(§)=R*+r?- 2rRcosp, Osgsw (from
theooe‘matheom). 9,= Pk /x 1s & value of the heating power
mitymmerocuslngpoMtoram P 18 the heating power

being absorbed by the metal, k =20"% 1s & concentration coeffi-.
clent of the heat source mmemdmldirectlon. b 18 a focal
8pot radius. Density of the energy being absorbed at every point a
dietance from which to the point 0 18 equal to r at time when
the eleciron beam passec the one whole eircle of radius R (in the
rotation period T =2aR/v ., where v _1s & scan velocity) is
determined by the intesml

/2
E(r) = aqoj; axp(-k_(r"+R3-2Rr cos(v, t/R)1)dt=

2Rq R
= T—ﬂ ezpl-k (r*+R*)1] ezp(2k rR cosp)ds.

As qg(r) we accept @ mean value of the enmergy density being
abgorbed per unit time
Er) g P
WiRy = o =Rl o +R’)I£ ezp(2K rR cosp)dp. (28

L

From (28) for R=0 we obtaln ;cha known formula of the normal
17




distribution g(r) 1n the case of the axlgymmetric heating by a
fixed beam: q(r)=q ezp(-k r?).

I we expand the exponentisl function in (28) in the form of a
‘Taylor series the expression of g(r) can be written a8

L2 [

: - 2
(2n=1)11 (2k rR)*" ]. ‘
()N (2n)!

1 g(r) from (28) apropos an
Extremun shows that a meximum point of g(r), r=r . is determined by
the equation '

5" -

: .
; & (R cosp - ryezp(2k rR cosg)ds = 0, (29)

Tom which we obtain the Inequalities 0#",{3. These 1nequalities

Are verifled by a form of the curves Qir)/q, which are showmn 1in

for the case whers b=0.03 m and the scan radius R taltes

Ous values: 1 - R=0; 2 - K=0.015m; 3 - R=0.025m; 4 - B=

S m; 5 - R=0.04m; 6-R=0.5m If R=O and R=0.15m then

m point =0 but 1f R is further increased then maximum

are situated in the interval (O,R).  Thus, for epecific

f R the trajectory (a circle) of a maximm absorption of

atlng energy 1e situated interior to the circle bounded by

scan trajectory r=R Dbut not on the ifne r=R  of the beam
ging. Bgquation (29) can be written as

2 (@n-1)11 : |
. Z (2n-1) [ 2k r? B , ](21( ’-l__n-lnln'.ﬂm-. = 0.
oy famir Lo ey 4T

cting ourselves by two terms of the serles we obtain the bi-
ratic equation

U KRS ACR2 - KR - ik B 1) = 0,
o® which we find the approximate valug of r:
ro~ (2(k B 1)1'/%/(k R),
the Mtim for I‘G)O
8







R 3 k-l!3= a-llﬂb. v
To tllustrate the developed mathematical model the calculati-
f steady-state heat EBAN regimes for niobium in an autocrucib-
diameter 280 mm (a=0.14 m) where a level of the metal in the
rucible 1=0.14 m and the electron beam power P =190 k¥ were
1. According to (10} the electron-beam heating efficiency
: ,oqml to n=0.T, therefore we accept the power value belng

gorbed by the metal 1s equal to P=nP =133 kN.

For the calculations we take the tolloning values of the para-

meters (10,131 1 =2740 K: C, =0.2772-107J/(n°K); T,=300 Ki A=

=56.2716 W (M-K); w =a =400 W(m*K): €=0,4; ¢,=0,31102.10'%; ¢ =
aeaaﬁa.szs (the values of ¢, &nd ¢, are obtaimdor the basis or
the experimental data from t1]). In the solid phase domain we con-
l.de.r 8 step dependence of the thermal conductivity coefficient on
t_ha temperature obtained with the help of data [13] sbout the nlo-
bium heat conductivity. We consider an axlisymmetric heating of me-
tal by a fized (R=0) or scanning electron beam over the circle of
radius O<R¢a, whnere s steady-state distribution of Lha power
density q(r) on the heating surface is determined in the form of
(28).
in ?ig.3 and 4 the curves of the metal temperature distributi-
on over the surface being heated obtained for various values of the
scan radius R (1 - R=0; 2 - R=0.02 m; 3 - R=0.04 m; 4 - R=0.06 m;
b=0.01 m (continuous lines) and b=0.04 m (dashed) for Pig.4 and
R=D for ng.s ) and the focal spot radius b (1 - b=0.01m; 2 - b=
=0,02m 3-0=0.08m; 4 - b=0.04 m for Fig.4) provided that the
MEMS syatem is used are shown. Hamnmau--osws because 1n
autocrucibles working substantively with the MEMS systems the metal
motion velocity 18 neer to this value namely [10). Tne yalues of R
obtained for values of the scan redius situated in the bounds
from O to 6 cm Aare changed from 8.34 to 13.11 where b=0.01 m and
from 11.79 to 12.88 for b=0.04 m that 18 these values are near 1o

the value Rk=10 (101. A comparison of the curves of the melt
surface temperature obtained for b=0.03 m, v _= 0.3 m/8 (continuous
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line3) and R=10 (dashed) is presented in Fig.5 for various values
of scan radius (1 - R=0; 2 — A=0.02 m: 3 - R=0.04 m; 4 - R=0.06 m).

A course of the temperuture curves Tlr.l) for different
values of R reproduces a benavior ¢f the corresponding dependences
g(r) (Fig.2). Increases of the ocan radius and the focal spot
radius have s a consequence & more uniform distribution of the
denslty of the energy being absorbed over the heating surface and
consequently a decrease of the temperature gralient as well 88 na-
turally an Incresse of the peol radius en the surface z=1. If R 18
increased then tha points of a marimum temperacure attainment rece-
de from the center r=0 of the pool surface as. well as the tempe-
rature T(0,1) decreases and approaches 1o the melting temperature
T, therefore 1T the scan radius increasee eitremely ( R > 0,06 M )
then there 18 in the central part of the pool surtacs possible a
formation of a solld metal gzone, Golng over the meliing tempera-
ture the temperature curves have a break point. This is stipvlated
by a8 distinction of the thermal conductivity coefficlents— for the
melt and solid metal.

To determine the error admitted by approximete solving of non-
Hnear boundary problem (20) we have computed the value of the sum-
mary energy losses from the surfaces 2=1, 2=0 and r=a which for
the ezact solutlion of the steady-state problem must be the same a8
the value of the power P absorbed by the metal. The calculations
realized with the use of the nioblum data and Lhe parameters stated
above for b=0.08 m show that the error admitted to determine of
the temperature on the surfaces 2z=1, 2=0 aAnd r=u computed with
respect tc the value of the power absorbsd 18 equal to 1.26%8 for
R=0 and to 0.165% for R=0.03 m.

In Flg.6 the sectlons of the solld-1fquid Interraces, r=R(z),
obtained at b=0.03 m and varlous values of the scan radius R (1 -
- R=0; 2 - R=0.08m; 3 - R= 0.04 m; 4 - R=0.05 m) for the casas
when one uses the MEMS system (v‘=0.3 m/8, continuous lines)
including the case when the radiatlon and evaporation heat 108k<s
from the surface 2z=1 are not consldersed (f=0, dot-and-dash lines)
and for the case when the forced melt stirring 1s not used (v =
=3.065 m/8, dashed lines) are presentsd. In thie last case for the
variation of the scan radius from O to the value A#=0.05 m the
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value of % 18 changed 1n the bounds from 1.44 to 2.00.  The
pool depth 18 increased with increasing of R and achieves to a
maximum for a specific value of the scan radius but for further
Increasing of R cone 18 decreased. At the expense of the heat
losses from the surface being heated the depth and the 1adius
of the pool are half approximately decreased. In the csse of
the melting with using of the NEMS the pool has the greatest
dismeter not on the surface z=1 hut-a little beiow, thus, the
sol1d-1iquid interface has a small bend in the direction of the
axis r=0 adding to the pool an ellipsoidal form observed 1in
practice. The presence of this bend 18 explained by exceeding the
heet losges over the energy density values being absorbed 1in the
poinis where the melting isotherm surface intersects the surface
z=1 iherefore tihe derivative of the temperature with respect to
the axial coordinate, 2z, s near the surface 2=l negative. In
the two other cases this derivative is positive (v _=0.006 w's) &nd
one 1s equal to gero (f=0). It will be noted that 1n the case of
the linear problem (f=0) & disposition of the solid-1iquid phase
boundary r=R(z) becomes independent of the effective thermal
conductivity coefficient.

Dependences of niobfum 1iquid pool volume upon scan radius for

the cases where u_-_-o.a m/s (continuous 1lines), v =0.005 ws -

(dashed) and =0 (dot-and-dash) for »=0.01m (Indexing 1-3) and

b=0.04¢ m ( 1°~ 3) and various values of power P (1:1'- P65 kW: '

2;2°- P=100 XW; 3:3" - P=133 kW) are shown in Pig.T.:
In Fig.8 dependences of niobium mean integral overheating
over whole pcol volume (continuous 1ines) and melt overheating on

pool surface (dashed) upon scan radlus for the cases where =0.01m ,

(Indexing i-3) and b=0.04 ® ( 1'- 3") for various values of power
P (131~ P65 KW; 2:2'- P=100 kW; 3:3° - P=133 kW) are presented.

The grephs presented in F1g.7,8 show that an increase of the
scan radius causes an incresse of the pool volume and a decresse of
the melt overheating. This ie completely explained 1n cormection
#ith 8 mors unfform distribution of the energy absorbed over the
heating surface with an increase of R. But In the case of the
melting with the WENS an extreme Increasé of the scan radius causes
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& decrease of the volume end for every b the dependence W(R) has
an attainment point of a maximum, A comparison of the curves W(R)
obtained for v =0.005 m/s and v,=0.3 m/s shows that the wuse of
the permits to obtaln for R=0 the volume which 1s 7.5-20 times
bigger (depeuding on a value of b) end for R=5 cm, for example,
2.8-3.5 times bigger. Applying the clreular scan of the eiectron
beam the pool volume for =1 cm can be obtained 12 times bigger
(in comparison with the axisymmetric heating by a fixed beam) and
for v=4 cm the volume 18 inecreased by 15%. At the expense of the
heat losses from the surface being heated the l1iguid pool volume is
2.5-4 times decreased for the power being absorbed P=65-133 KW.
The melt overheating on the pool surface 1is more than 2 times
bigger than the mean integral overheating over the whole pool volu-
e (Pig.8).
In Pig.9 dependences of the relative summary energy losses

by radiation and evaporation from the heating surface, PHD g/ P
{continuous lines), the losees by radiation, P ,/P, (dashed Iines)
and by metal evaporation. P /P, (dot-and-d.ash ones) on the scan

radius R for =10 and various values of the focal spot radius
(1-00.01m; 2-0=0.02m; 3-0=0.03m; 4 - »=0.04 m) are
shown. An analysis permits to conclude that with an increase of
the scan radius the summary losses P“! , are decreased, the
contribution of the radiation losses is increased and one of evapo-
ration 1s decreased, Ist us glve altention to the fact of & stabi-
11zation of the summery losses and the presence of a minimm value
of Poo.ey/P TOr @ specific value of the scan radius (a maximum
¥alue of the liguid pcol volume corresponds to which (Fig.T)). This
points to possiblility of principle of such construction of the EBAN I
technological process for whfch the energy losses by means of
radiation and evaporation may be reduced to & minimum,

At the reduction of Stefan problem (19) to problem (20) for
ihe modified temperature u(r,z) a dependence of the thermal con-
ductlvity coefficient 1_(T) on temperature on the surfaces r=a
and 2=0 is not taken into account but constant (mean) values of )
are utilized. After an application of the Eirchhoff transformation
to the more compllcated problem (16), (17) we obtain the nonlinear
boundary problem for determination of u(r,z)
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1 8 (
et dt o J +.—— =0, OKr<a, 02<l;
roor \ ar 8z?
U : 5L 5
0 =0 Pr=0; ar * e (2)ITu) -T =0, re=a; (30)
au B
Bz~ %M [(T{u) -—Tu|=0: 2z = AUr)-rifu)), z=1.

Because Green's function of a linear poundary problem corres-
ponding to problem (30) does not erlst then representing the boun-
dary condition on the surface r=a in the form '

e thu=hu-a (2)T -T 1, r=0 03] (0<h<a)

we can formulate the boundary probiem for an suxiliary Green func-
tlon G,(r, Z3p,7)

1 @ 8G 8%g
— [r—“ + —P= - s(r-p)slz-T), 0<r,pca, O<Z,2¢03

r ot ar 82°
&3 G 2
--8—;‘1 =0, r=0: —-;-r'a + h-"}a:: G, r=a: -Eéﬂ = 0, z=0, #=1,

the sciution of which 18 cf the fOI!ll

Golra2zin,d) = — Z G, (2,20 (v o3I (0 PP,
hei
G (Z.2) = 1“ezp[—1a(z~z}ll Hezp(-2y x) 11 vepl-2y (1-2))1, 2sz;

G (2.2) = G (Z:8); P = (y2¢ R¥11 - wap(-gy W30, 0);
where 0<1‘<1'<13<... are roots of the equation hJ (ya2)-/ (y3)=0.

Introducing the following notativns: u(r.M)=v (r), u(r, )=
=0, (r), u(a,z)=w(z), arfter an apolication of the second (reen
formula we can express the unknown functdicn wu(r,g) 1o terms of 1T
values on the surfaces 2=0, 2=l and r=a

a 1

u(r. )= lgaa(r.z:p.lnq{pl-ﬁ!‘{v, (0)))Ipdp + ag Jq(r2:0,2) (w(T) -

a
- a (D) (T(wix) -1, 1z -g Gy(r.2i0.00a, (9) (P, (p)) -1, Ipdp. 131
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Writing integral relation (31) for 2=0, z=1 and r=3 consecutively
we obtaln 2 gystem of three Integral Hammersteln equatlions concer-
ning the function v (r), v (r) and w(z), After approximate sol-
ving of this system by mesns of & projective-net method we can find
u(r,z) ftrom (31). :

The nmumerical solutlon of the integral equaiions system obtal-
ned from (31) 1s foumd in the case of the computation of a ste-
ady-state temperature regime for the EBAM of niobium in an autocru-
cible of diameter 280 mm ( 0=0.14 m) where a level of metal In
which is equal to 1=0.14 m. We have assumed fthat « (r)=0, R=0,
b=0.04 m, ) =562.716 W/(m-E). We have considered a linear depen-
dence of the thermal conductivity coeffizient lﬂﬂ‘) on the tempe-
rature on the basis of the nioblum thermal conductivity data [13]:

A (1) =2 + BT ), A 753.7 W/(m-K), p=0.01063, T =300 K.
In Fig.10 the sectinns of the solid-liquid interfaces r=R(z)

obtained for « =400 #/(m®-K) (curves 1-3) and for the 'two values
of the electron-beam heating power being absorbed by metal,
P=130 kW (contimuoug Iires) and P=65 kW (dashed) in the csases of
various representations cf tne thermal conductivity coefficient in
the sol1d phase domain: i.=54.1 W/(m-K) (the value from (101,
curve 1), 15=66.2 B/(m-K) (a mean value 1n the temperature
intervel from 300 K to 2740 K, curve 2) as well 8 lilnear dependence
A=A () (curve 3) are presented. The curves 4 and 5 correspond to
the case where A=A (7) and a linear dependence of the heat
exchange coefficient ¢ (z) on the coordinate 2, moreover

«, (0)=300, « (1)=500 W/ (m?.K} (curve 4), and also the curve 5

corresponds to the values a (0)=200, « (1)=600 W/(n®.K).

Thus, in consequence of taking account of & dependence of - the
thermal conductivity upon the temperature that is poseible thanks
to using of the auziliary Green functlon method Tor the concerned
example a refinement of the results of the calculation of the melt
volume makes up from 10.9% (comparison of the curves 2 and 3) to
36.6% (comparison of the curvee 1 and 3). Besides, the application
of the auxiliary Green function method permits to take into account
a change of the heat exchange coefficients ¢n the autocrucible sur-
racea being cooled, that, 1n turn, for the preceding exsmple leads
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to & refinement of the reeults of the calculation of the melt volu-
me by 5.T% (comparison of the curves 3 and 4) and by 10.2% (compa-
rison of the curves 3 and 5).

If we shall compare the obtained values of the liquid pool vo-
lume and the results obtained for the constant value i _=66.2 W/ (mK)
on surface r=a and a step dependence 1.=A_(T) 1nto the solid
phase domaln, @ ., then we shall see such assumptions lead to excee-

ding of the volume for « =400 W/(m°K), P=130 kW by 15.3% and by
9.8% for P=65 kW. In addition, the maximim exceeding of the me-
tal temperature in the s0lid phase domain for P=130 KW attains
100 K and 40 K at the center of the fncal spot on the surface be-
ing heated.

To verify & correspondence of the mathematlcal model descri-
bed by Stefan problem (19) to real thernal EBAN reglmes we have
conducted a comparison of the computulion results and known experi-
mental data from [10], In the case of the nioblum ezperimental
melting in an autocrucible of diameter 280 mm wiih usirg of the
MEMS for the electron beam maximum powsr P =190 K& the mass of the
obtained melt oscillates Irom 8.4 kg 10 8.7 kg that 1s between

976.7 cm® and 1011.6 cm®. In Pig.7 the curves W(R) corresponding
to the value P=133 kif 1interssct this band of values for the scan
radius values between 3 and £ cm.

According to [10] in the case of the EBAW without the [forced
stirring the pool depth of zirconiwn in an sutocrucible of diameter
250 mm makes up 24-28 mm. According to our galeculations for gir-

contum (0=0.125 m; 1=0.1 mi « =400 W/(m*-K); a =50 W (n®-K); v =
=0.005 m/g; b=0.03 m; R=0.35 m, 1 and 2, from (101) the pool depth
oseillates from 20 to 27.2 mm 1f the absorbed power 18 changed
Irom P=52.5 kN to P=105 kM.

In (101 one has obtained ezperimental results for the girconi-
um melting in an autocrucible of diameter 215 sm for the mazimum
power P =102 KW (P=0.7P_=T1.4 kW). The autocrucible bottom Las
not been cocled, The discharge of the eirconium melt for the mel-

ting with the MEMS was equal to 10.T kg (1648.7 cm®) &nd without

the MEMS one was equal to 3.1 kg (477.8 em®).  To compare the
repiilts we have realiged the caleulations for the follows valuess of
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the parameters: 1) o=0.107T5 m; 1=0.1m; ©=0.03 m; P=T1.4 k¥:
a = 400 W/(m®-K); a,= 50 W/(n*-K); v =0.3ms; 3cmsks 6 om;
2) 6= 0.1075 m; 1= 0.05 m; b=0.03 m; P=T1.4 kW; a =400 W/(n® K);
a,=50 W/(u*-K); v _=0.005 w/s; 8 cm <Rs 5.25 cm. In the first case
the 1iquid pool volume 18 changed from 919 em® to 1633 cm® and

in the second case one 18 changed between 206 cm® and 464 on®.

In (14] one hae established that the melt overheating over the
melting temperature did not exceed 100 K for the stirring velocity
in a 1iquid pool v =1 m/s. This result is well consistent with
the values of the maximum temperature on the pool surface obtained
by means of our numerical calculations. For niobium (o=1=0.14 m;
b=0.03 m; P=133 kW; R=0.065 m) the maximum overheating is equal
to 101-102 degrees and for the scan radius R=0.08 m one achieves
186 K. For girconium (a=0.i075*m; 1=0.11 u; 0=0.03 m; P=T1.4 kW)
the maximum overheating is changed from 134 K (R=0.045m) to 95 K
{R=0.055 m). , y

Thus, the results obtalned by means of computations are expe-
rimentelly verified completely patisfactorily therefore the develo-
ped mathematlical models can be used for technological investiga-
tione of the EBAH.
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FREE BOUNDARY PROBLEMS AND MATHEMATICAL MODELLING
OF ELECTRON-BRAM AUTOCRUCIBLE MELTING
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